Fundamentals of Structural Geology
Exercise Solutions: concepts from chapter 2


Exercise Solutions: concepts from chapter 2 

1) Plot the spherical datum with unit radius as a wire-frame diagram using lines of constant latitude and longitude. 
The spherical coordinates are latitude and longitude () where latitude ranges from 0 at the North Pole to  at the South Pole and longitude ranges from 0 at the Greenwich meridian to 2 upon completing one circuit of the sphere. The components of the unit radius vector from the origin of a Cartesian coordinate system are related to the spherical coordinates as:
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These components are the x, y, and z coordinates of points on the sphere. The following Matlab m-script computes these coordinates and plots the sphere as illustrated in Figure 1 of the exercise.
% sphere_lat_long.m
% Unit Sphere as a wireframe 3D plot composed of curves of
% constant longitude and latitude at 10 degree intervals.
% Define components of m x n unit radius vectors, N, with heads 
% at intersections of lines of longitude and latitude.
clear all; % clear variables, globals, functions from memory
clf reset; % clear figures, reset default figure properties
m = 37; n = 19; % number of lines of longitude and latitude
lm = linspace(0,2*pi,m); % lambda (long) coords. on parameter plane
ph = linspace(0,pi,n); % phi (lat) coords. on parameter plane
[LM,PH]=meshgrid(lm,ph);  % grid of points on parameter plane
NX = cos(LM).*sin(PH); % x-component of radius vector
NY = sin(LM).*sin(PH); % y-component of radius vector
NZ = cos(PH); % z-component of radius vector
mesh(NX,NY,NZ) % 3D mesh surface plot of unit sphere
xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')
title('The Unit Sphere'), axis equal
Of course there are many different ways to write an m-script to accomplish the same thing. Below is much shorter version that also produces Figure 1 of the exercise. Note the different method to define the longitude and latitude intersections.
% sphere_alt.m
lat = 0:(pi/19):pi; long = 0:(2*pi/37):2*pi;
[LAT,LONG] = meshgrid(lat, long);
X = sin(LONG).*sin(LAT); Y = sin(LAT).*cos(LONG); Z = cos(LAT);
figure, mesh(X,Y,Z), axis equal
2) The mathematical datum used for the Global Positioning System (GPS) is the World Geodetic System datum for 1984 (WGS-84). The standard physical datum, usually referenced to local mean sea level at the coastline, is the geoid (Fig. 2.2). Explain what is meant by a ‘datum’ and describe the general differences between WGS-84 and the geoid.

The convention in geodesy is to use a mathematical model for the Earth's shape that is an oblate ellipsoidal: a three dimensional surface formed by rotating an ellipse about its minor axis. The semi-major and semi-minor axes of the ellipse are called a and b, respectively, and the rotation of the Earth causes some extension of the equatorial radius and some flattening at the poles, so a > b. A standard model used by geodesists is called the Geodetic Reference System 1980 ellipsoid, or GRS-80. This model may be used as the mathematical datum from which elevation is measured. Today the datum used for the Global Positioning Systemxe "Global Positioning System" is the World Geodetic System datum for 1984 (WGS-84) and this is almost identical to the ellipsoid called GRS-80. On the other hand elevation may be referenced to a sea level datumxe "sea level datum" that is mean sea level as determined by tidal gauges and leveling surveysxe "leveling surveys" are used to determine elevations away from the coast as heights above (or below) this physically defined datum called the geoidxe "geoid". The geoid is everywhere perpendicular to the local direction of the acceleration of gravity, g. For a fluid Earth, the geoid would be a perfect ellipsoid, but the Earth's geoid is very irregular because of topography and variable rock density. The WGS-84 ellipsoid may be separated from the mean sea level geoid by a considerable distance, as illustrated in Figure 2.2b.

3) Investigate the gnomonic projection (Fig. 2.3) from a spherical datum with radius taken as the appropriate semi-axis of the GRS-80 ellipsoid. Consider two cases, O(0, 0)

and O(/2, 0), for the position of the origin O(latitude, longitude) where the projection plane is tangent to the sphere. Plot lines of constant latitude and longitude on the projection in order to illustrate the distortion that is inherent to it. Describe these distortions.

Considering a spherical datum of radius R, take the so-called perspective point (view point) as the center of the sphere, C, and project points from the sphere onto a plane that is tangent to the sphere at the point O (Fig. 2.3a). Points on the sphere are projected to the plane along straight lines that emanate from the perspective point. Directions from the point O are not distorted and straight lines from this point represent arcs of great circles that are the shortest paths from this point to any other on the sphere. The point O(, ) is the origin of a two-dimensional Cartesian coordinate system on the projection plane (Fig. 2.3b). For an arbitrary point, P(, ), on the sphere (Fig. 2.3a) with latitude, , and longitude, , the relative longitude is determined by the difference,  =  –  o. The angle  is measured from the radial line CO to the radial line CP’. The point P’ is the projection of the point P onto the projection plane. The angle  is measured in the projection plane from OX to the line OP’ (Fig. 2.3b). The Cartesian coordinates of the projected point, P’(X, Y), are derived from the trigonometry of Figure 2.3 as functions of the radius, R, and the two angles  and  (Richardus and Adler, 1972, p. 59):
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In terms of the geographic coordinates, latitude and longitude, the Cartesian coordinates of the point P’ on the projection plane are (Richardus and Adler, 1972, p. 59):



[image: image3.wmf](

)

(

)

cossin

sinsincoscoscos

cossinsincoscos

sinsincoscoscos

oo

oo

oo

R

X

R

Y

jl

jjjjl

jjjjl

jjjjl

D

=

+D

-D

=

+D


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3)

Equations (3)

 are the mapping equations for the gnomonic projection from a spherical datum. 
For o = /2 the point O is at the North Pole and this is referred to as a polar Gnomonic projection.  The following Matlab m-script plots this projection.
% gnomonic_polar.m
% Polar Gnomonic Projection from spherical datum
% Origin is on the North pole
% initialize and scale plot
clear all, clf, hold on % clear variables and figure, hold plot
axis equal % equal scaling in x and y
r = 6356752.3; % radius of spherical datum (m) from GRS-80
dtr = pi/180; % conversion factor degrees to radians
ph0 = (90*dtr)+eps; % latitude of origin on projection plane
lm0 = 0*dtr; % longitude of origin on projection plane
phd = 60; lmd = 360; % range of lat and long (degrees)
phr = phd*dtr; lmr = lmd*dtr; % range of lat and long (radians)
nlat = 7; % number of lines of latitude
np = 30; % number of points on each
PH = linspace(ph0-phr,ph0,nlat); % vector of latitude coords.
LM = linspace(lm0,lmr,np); % vector of longitude coords.
for j = 1:nlat % loop to plot nlat lines of lat. with np long. points
    ph = PH(j); % lat of line to be plotted
    DEN = sin(ph0)*sin(ph) + cos(ph0)*cos(ph)*cos(LM);
    X = (r*cos(ph)*sin(LM))./DEN;
    Y = (r*(cos(ph0)*sin(ph) - sin(ph0)*cos(ph)*cos(LM)))./DEN;
    plot(X,Y,'k')
end
nlon = 37; % number of lines of longitude
np = 30; % number of points on each
PH = linspace(ph0-phr,ph0,np); % vector of latitude coords.
LM = linspace(lm0,lmr,nlon); % vector of longitude coords.
for k = 1:nlon % loop to plot nlon lines of long. with np lat. points
    lm = LM(k);
    DEN = sin(ph0)*sin(PH) + cos(ph0)*cos(PH)*cos(lm);
    X = (r*cos(PH)*sin(lm))./DEN;
    Y = (r*(cos(ph0)*sin(PH) - sin(ph0)*cos(PH)*cos(lm)))./DEN;
    plot(X,Y,'k')
end
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Note that the areas of regions bounded by latitude and longitude lines with the same angular intervals increase with distance from the pole, thereby violating the cartographic criterion of equivalency. 

For o = 0 the point O is on the equator and this is referred to as a transverse Gnomonic projection. If the point O is on the Greenwich meridian  = . The following Matlab m-script plots this projection. Note that this is identical to the script for the polar projection except for the choice of parameters and the ranges of some variables.

% gnomonic_trans.m
% Plot transverse gnomonic projection from a spherical datum.
% Origin is on the equator at the Greenwich (zero) meridian.
clear all, clf, hold on % clear variables and figure, hold plot
axis equal % equal scaling in x and y, no axes or box
r = 6378752.3; % radius of spherical datum (m)
dtr = pi/180; % conversion factor degrees to radians
ph0 = 0*dtr; % latitude of origin (radians)
lm0 = 0*dtr; % longitude of origin (radians)
phr = 90*dtr; % range of latitude (radians)
lmr = 90*dtr; % range of longitude (radians)
nlat = 10; % number of lines of latitude
np = 30; % number of points on each
PH = linspace(ph0-phr/2,ph0+phr/2,nlat); % vector of lat coords
LM = linspace(lm0-lmr/2,lm0+lmr/2,np); % vector of long coords
for j = 1:nlat % loop to plot nlat lines of lat. each with np points
    ph = PH(j); % lat of line to be plotted
    DEN = sin(ph0)*sin(ph) + cos(ph0)*cos(ph)*cos(LM);
    X = (r*cos(ph)*sin(LM))./DEN;
    Y = (r*(cos(ph0)*sin(ph) - sin(ph0)*cos(ph)*cos(LM)))./DEN;
    plot(X,Y,'k')
end
nlon = 10; % number of lines of longitude
np = 30; % number of points on each
PH = linspace(ph0-phr/2,ph0+phr/2,np); % vector of lat coords
LM = linspace(lm0-lmr/2,lm0+lmr/2,nlon); % vector of long coords
for k = 1:nlon % loop to plot nlon lines of long each with np points
    lm = LM(k);
    DEN = sin(ph0)*sin(PH) + cos(ph0)*cos(PH)*cos(lm);
    X = (r*cos(PH)*sin(lm))./DEN;
    Y = (r*(cos(ph0)*sin(PH) - sin(ph0)*cos(PH)*cos(lm)))./DEN;
    plot(X,Y,'k')
end
xlabel('X, Easting (m)'), ylabel('Y, Northing (m)')
title('Transverse Gnomonic Projection')
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Note the distortion of the shapes of regions bounded by lines of latitude and longitude at equal angular intervals, from nearly square near the origin to approximate parallelograms at some distance from the origin. Also, the areas of these regions increase with distance from the origin. All forms of the gnomonic projection are limited in that an entire hemisphere cannot be projected: the boundary of the hemisphere would plot at an infinite distance from the origin.
4) Investigate the transverse Mercator projection (Fig. 2.4) from a spherical datum with radius taken as the appropriate semi-axis of the GRS-80 ellipsoid. Place the origin at the Greenwich meridian on the equator, O(, ) = O(0, 0), and let both the latitude and longitude extend ±/4 to either side of the origin. To accomplish this projection use the following equations (Bugayevskiy and Snyder, 1995, p. 158):
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Note that equations (2.3) in the text plot the projection with origin at the pole, but X and Y are interchanged (see Errata). Use Matlab and equations (4)

 to plot lines of constant latitude and longitude on the projection at the equator in order to illustrate the distortion that is inherent to it. Describe these distortions.

For the Transverse Mercator projection a spherical or ellipsoid datum is projected onto a right circular cylinder. This transformation preserves the angular relations of curves on the datum and maps sections of the spherical or ellipsoidal datum onto a cylinder with its axis parallel to the plane of the equator (Fig. 2.4a). The cylinder is tangent to the ellipsoid along a particular line of longitude known as the central meridian. The equator and the central meridian are straight lines whereas all other lines of longitude and latitude are curved (Fig. 2.4b). Lines of longitude to either side of the central line are concave toward this line. Lines of latitude, other than the equator, are concave toward their respective poles and the lines of longitude are everywhere orthogonal to the lines of latitude. This projection is most appropriate where the mapped objects are organized along a particular meridian, or where the datum can be mapped separately in narrow strips aligned with different lines of longitude. The following Matlab m-script plots this projection.

% mercator_trans.m
% Transverse Mercator Projection from spherical datum
% Origin in on the equator at the Greenwich meridian
% Bugayevskiy and Snyder, 1995, p. 158
clear all; clf; % clear variables and figure,
hold on; % hold figure for plotting
r = 6378137.0; % radius of spherical datum (m)
dtr = pi/180; % conversion factor degrees to radians
phr = 90*dtr; % range of latitude (radians)
lmr = 90*dtr; % range of longitude (radians)
% construct and plot latitude lines
nlat = 11; % number of lines of latitude
np = 100; % number of points on each
PH = linspace(-phr/2,phr/2,nlat); % vector of lat coords
LM = linspace(-lmr/2,lmr/2,np); % vector of long coords
for j = 1:nlat % loop to plot nlat lines of lat. each with np pts
    ph = PH(j);
    b = cos(ph)*(sin(LM));
    X = (r/2)*(log((1+b)./(1-b)));
    Y = r*(atan(tan(ph)./cos(LM)));
    plot(X,Y,'k'), axis image
end
% construct and plot longitude lines
nlon = 11; % number of lines of longitude
np = 100; % number of points on each
PH = linspace(-phr/2,phr/2,np); % vector of lat coords
LM = linspace(-lmr/2,lmr/2,nlon); % vector of long coords
for k = 1:nlon % loop to plot nlon lines of long. each with np points
    lm = LM(k);
    b = cos(PH)*(sin(lm));
    X = (r/2)*(log((1+b)./(1-b)));
    Y = r*(atan(tan(PH)./cos(lm)));
    plot(X,Y,'k')
end
xlabel('X, Easting (m)'), ylabel('Y, Northing (m)')
title('Transverse Mercator Projection')
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Note the distortion of the shapes of regions bounded by lines of latitude and longitude at equal angular intervals, from nearly square near the origin to sectors of a ring at some distance from the origin along the equator. Also, the areas of these regions increase with distance from the origin along the equator and decrease with distance from the origin along the central meridian. The transverse Mercator projection is limited in use to a relatively narrow strip along the central meridian. Also near the poles the areas become quite distorted relative to those near the equator.

5) Most GPS receivers have onboard computers that are capable of reporting locations using the Universal Transverse Mercator (UTM) projection (Fig. 2.4). Explain, using a sketch, how the UTM projection is accomplished. Also, describe the UTM metric grid and how it is overlaid on this projection. In doing so explain what is meant by the following UTM coordinates of a location near Ship Rock, New Mexico, taken as the origin of a local coordinate system for mapping the northeastern dike (Fig. 2.5a):





Northern Hemisphere





Zone M12





Datum NAD-29





Easting: 694,000 m





Northing: 4,063,000 m





Elevation: 1,675 m

Figure 2.4 (reproduced below) illustrates how the UTM projection is accomplished how the UTM metric grid is overlaid on this projection.
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The six pieces of information required to define the UTM coordinates of a point include the designation of the hemisphere (Northern or Southern), the zone (one of 60 numbered consecutively toward the east starting with the central meridian at 177oW; each spanning 6o of longitude and extending from 80oS to 84oN), the datum (in this case the North American Datum of 1929, NAD-29), the Easting (measured from an origin 500,000 m to the east of the central meridian), the Northing (measured in this case from an origin at the equator toward the north), and the Elevation from the datum.
6) Rearrange the two-dimensional transformation equations for a rotation of axes about a common origin, as recorded in equations (2.13) to solve for the old coordinates, x and y, and derive equations (2.16). Draw a carefully labeled figure to identify the coordinates and angles, and show all the steps of the derivation.
Equation (2.13) is the two-dimensional transformation in which every point, P(x, y), referred to the old coordinate system takes on new coordinates, P(x’, y’):
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The angle  is the counterclockwise angle from the Ox to Ox’ and the trigonometry used to derive these equations is illustrated in Figure 2.8a reproduced below: 
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Eliminating x from (5)

:
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Eliminating y from (5)

:
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Using the trigonometric identity 
[image: image13.wmf]22
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 we find equation (2.16):
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7) Using the table of direction cosines (2.28) for the three dimensional transformation of coordinates, reduce the transformation equations to the two dimensional equivalent forms for a counterclockwise rotation through angle  about the z-axis in the (x, y)-plane (Fig. 2-8a). Some of the direction angles will have special values such as 0 or /2: give the values for all direction angles and direction cosines. Draw a figure showing the relations among the direction angles and the angle  in the (x, y)-plane. Derive equations (2.13) from this more general three-dimensional form.
From table (2.28) the transformation equations are:
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Here, for example,  mzy’ = cos(z, y’). Reduction to 2D in the (x, y)-plane requires the following assignment of angles and resulting direction cosines:
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With these direction cosines (9)

 reduces to:
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The next step is to interpret the direction cosines in terms of the angle  as shown in the following figure:
[image: image18.emf]x y ax' y' O a (p/2)-a (p/2)+a
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With these interpretations of the direction cosines (11)

 is rewritten as (2.16):
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8) Consider the consequences of a three dimensional rotational transformation of coordinates about the origin, as described in the following table (2.27), for the components of the position vector p:
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Here the vector components referred to the old (x, y, z) and the new (x’, y’, z’) coordinate systems (Fig. 2.9a) are (px, py, pz) and (px’, py’, pz’) respectively, and the mij are the direction cosines of the direction angles between the ith axis and the jth axis.

a) Write down the matrix of direction cosines corresponding to the interior of table (14)

 for a rotation of coordinates about the z-axis given by the angle (z. Confirm your result by comparison to the two-dimensional example (2.14).
For rotation about the z-axis the angle, , is shown in Figure 2.8b and below we write (z for that angle. Then the direction cosines forming the interior of Table (14)

 are:
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Transformation of the position vector components for rotation of coordinates about the z-axis is accomplished by taking the transpose of this matrix and multiplying it by the column matrix of the old components:
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This operation reproduces (2.14) where ( = (z:
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b) Consider a position vector with components of unit value in the old coordinate system:
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Compose a Matlab script (m-file) that computes the vector components (px’, py’, pz’) referred to the new coordinate system for a rotation of coordinates about the z-axis given by (z = /6. Here we provide the Matlab script that is used throughout this exercise. 
% rot_vector.m
% rotational transformation for coordinates of a position vector
clear all % clear memory
hp=pi/2; % define half pi
P0=[1;1;1] % define components of vector P0 in (x,y,z)
% rotate (x,y,z) about the z axis
az=pi/6; % define rotation angle about z
MZ=[cos(az),cos(hp+az),0;cos(hp-az),cos(az),0;0,0,1]
% note cos(hp+az) = -sin(az) and cos(hp-az) = +sin(as)
P1=(MZ.')*P0 % calculate components of P0 in (xp,yp,zp)
% rotate (xp,yp,zp)  about the yp axis
ayp=pi/4; % define rotation angle about zp
MYP=[cos(ayp),0,cos(hp-ayp);0,1,0;cos(hp+ayp),0,cos(ayp)]
P2=(MYP.')*P1 % calculate components of P0 in (xpp,ypp,zpp)
% rotate (xpp,ypp,zpp) about the xpp axis
axpp=pi/3; % define rotation angle about xpp
MXPP=[1,0,0;0,cos(axpp),cos(hp+axpp);0,cos(hp-axpp),cos(axpp)]
P3=(MXPP.')*P2 % calculate components of P0 in (xppp,yppp,zppp)
% rotate the coordinates in one transformation in the order
% MZ, MYP, MXPP (rotation about z then yp then xpp)
MZYX=MZ*MYP*MXPP, % define the rotation matrix
P4=(MZYX.')*P0
% change the rotation order to MZ, MX2, MY1
MZXY=MZ*MXPP*MYP, % define the rotation matrix
P5=(MZXY.')*P0
% show that the transpose of MZYX is equal to the inverse of MZYX
MZYXT = MZYX'
MI = MZYXT*MZYX
% sum the squares of the column and of the row elements
sum(MZYX.^2,1), sum(MZYX.^2,2)
P0 =

     1

     1

     1

MZ =

    0.8660   -0.5000         0

    0.5000    0.8660         0

         0         0    
1.0000

P1 =

    1.3660

    0.3660

    1.0000

c) Continue developing your Matlab script so that it transforms the vector components (px’, py’, pz’) referred to the new coordinate system found in part b) according to a rotation about the y’-axis by (y’ = /4 to find the new components (px”, py”, pz”). Then transform these components according to a rotation about the x”-axis by (x” = /3 to find the components (px”’, py”’, pz”’). For each transformation print the matrix of direction cosines corresponding to the interior of table (14)

 and print the components of the position vector after the rotation.
MYP =

    0.7071         0    0.7071

         0    1.0000         0

   -0.7071         0    0.7071

P2 =

    0.2588

    0.3660

    1.6730

MXPP =

    1.0000         0         0

         0    0.5000   -0.8660

         0    0.8660    0.5000

P3 =

    0.2588

    1.6319

    0.5195
d) Calculate the matrix of direction cosines that accomplishes all three rotations of coordinates in one transformation. Print the matrix of direction cosines corresponding to the interior of table (14)

 and print the components of the position vector after the rotation.  compare these to your result from part c). Now alter the order of rotation so you rotate first about the z-axis, then the x-axis and finally the y-axis. Compare the outcomes and comment upon the importance of order in these calculations.
MZYX =

    0.6124    0.2803    0.7392

    0.3536    0.7392   -0.5732

   -0.7071    0.6124    0.3536

P4 =

    0.2588

    1.6319

    0.5195

MZXY =

    0.3062   -0.2500    0.9186

    0.8839    0.4330   -0.1768

   -0.3536    0.8660    0.3536

P5 =

    0.8365

    1.0490

    1.0953
The components of the position vector P4 are identical to P3 calculated above, so the code for the combined transformation is confirmed. The components of the position vector P5 are different, however, so the order of rotation clearly changes the outcome.
e)   In general the rotation matrix is not symmetric: the transpose is not equal to the matrix itself. On the other hand the rotation is orthogonal: the transpose is equal to the inverse of the matrix. Show by example that the rotation matrix you have derived in part d) is not symmetric but is orthogonal. Recall that the product of a matrix and the inverse of that matrix yields the identity matrix.
MZYX =

    0.6124    0.2803    0.7392

    0.3536    0.7392   -0.5732

   -0.7071    0.6124    0.3536
The transpose of this matrix is:

MZYXT =

    0.6124    0.3536   -0.7071

    0.2803    0.7392    0.6124

    0.7392   -0.5732    0.3536

This is not the same matrix so MZYX is not symmetric. However, multiplying MZYX*MZYXT we find the identity matrix:

MI =

    1.0000    0.0000   -0.0000

    0.0000    1.0000    0.0000

   -0.0000    0.0000    1.0000

Therefore the transpose is equal to the inverse and the rotation matrix is orthogonal.

f) Demonstrate by calculation that the following equations (2.49) are true for the rotation matrix found in part d).
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The line of code that sums the squares of the column and of the row elements in the matrix MZYX is:

sum(MZYX.^2,1), sum(MZYX.^2,2)
ans =

    1.0000    1.0000    1.0000

ans =

    1.0000

    1.0000

    1.0000

g) Draw a sketch of the Cartesian coordinate system (x, y, z) and illustrate the positive sense of each rotation angle for each of the following: (z = /2, (y = /2, (x = /2. Write down the general rule that describes the sense of rotation.
The positive senses of each rotation angle are shown in the following sketch:

[image: image27.emf]x y O xz z xy x x


The sense of the rotation angles is determined using a right hand rule: point the thumb of your right hand in the positive direction of the axis of rotation and rotate about the thumb in the direction in which your fingers naturally curl.

9) Figure 2.12 shows a dike segment from the northeast Ship Rock dike (Delaney and Pollard, 1981) and the elliptical coordinate system used in mechanical models of dikes.

a) Use equations (2.32) to derive the standard equations for the set of ellipses and the set of orthogonal hyperbolae that define the elliptical coordinate system with common foci on the x-axis at x = ±f as pictured in Figure 2.12b. 
b) Derive the transformation equations for the elliptical coordinates of a point P(, ) given the Cartesian coordinates P(x, y) of that point. Hint: consider the triangle formed by the line between the two foci and the line c drawing from any point P(x, y) on the ellipse to the focus at x = -f and the line d drawn to the focus at x = +f . Make two right triangles by dropping a perpendicular from P(x, y) to the x-axis and solve for the lengths of the two sides, c and d, in terms of x and y. Then recall that for any ellipse the length of the semi-major axis is a = (c+d)/2. Use this and the standard equation for the ellipse from part a). 

c) Plot a set of curves of constant  and a second set of curves of constant  to construct an illustration of the elliptical coordinate system (Fig. 2.12b). 
d) Describe the relationship between these curves and the lines of constant x and constant y for the Cartesian coordinate system in the limit as  → 0, and in the limit as  → 0.

Given the elliptical coordinates of a point P(, ), the Cartesian coordinates P(x, y) are found from equation (2.32):
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Here x = ±f = constant is the distance to the common foci along y = 0 for a set of confocal ellipses and hyperbolae (Fig. 2.12b). An equation for the set of ellipses is found by squaring all the terms in both equations 
(20)

, rearranging each equation, adding them, and using the identity  GOTOBUTTON ZEqnNum997919  \* MERGEFORMAT  to eliminate :
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An equation for the set of hyperbolae is found by squaring all the terms in both equations 
(20)

, rearranging equation, subtracting them, and using the identity  GOTOBUTTON ZEqnNum997919  \* MERGEFORMAT  to eliminate :
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At every point P(, ), the intersecting ellipse,  = constant, and hyperbola,  = constant, are orthogonal. 

From the standard equation for the ellipse (21)

 we note that the semi-major and semi-minor axes are related to the focal length and the coordinate  as given in equation (2.34):
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Consider the triangle formed by lines drawing from any point P(x, y) on the ellipse to the respective foci. The distances from the focus at x = -f to the point P(x, y) and from the focus at x = +f to the same point are found using the Pythagorean relation:
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[image: image35.emf]x y f P(n,g) =P(x,y) n = constant g= constant a b O d c


A property of the ellipse is that these two distances, c and d, are related to the length of the semi-major axis, a, as:
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Combining the first of (20)

 we have:(25)

, and then using the first of (23)

 with 
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Given the Cartesian coordinates of a point (26)

 provide the elliptical coordinates.(24)

 and 
The following Matlab m-script plots the set of confocal ellipses and hyperbolae.

% elliptical_coord.m
% plot the elliptical coordinate system
% as curves of constant xi and constant eta
% exterior to the elliptical boundary xio
clear all, clf reset; % clear memory and figures
a = 1; b = .2; % semi-major and -minor axial lengths
xio = atanh(b/a); % define elliptical boundary
x=-3*a:.05*a:3*a;   % Define x-coords. of grid
y=-3*a:.05*a:3*a;   % Define y-coords. of grid
[X,Y] = meshgrid(x,y); % define Cartesian grid
f = sqrt(a^2-b^2); % focal length of ellipses and hyperbolae
rt = sqrt((X+f).^2+Y.^2)+sqrt((X-f).^2+Y.^2);
xi = acosh(rt./(2*f)); % coordinate xi
eta = atan2(Y,(X.*tanh(xi))); % coordinate eta
eta(find(xi<xio)) = nan; % eliminate coords within boundary
xi(find(xi<xio)) = nan; 
contour(X,Y,xi,25,'k'), hold on % contour coords
contour(X,Y,eta,25,'k')
X2 = f*cosh(xi).*cos(eta); % transform to Cartesian coords
Y2 = f*sinh(xi).*sin(eta);
figure, contour(X,Y,X2,25,'k'), hold on
contour(X,Y,Y2,25,'k')
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In the limit as  → 0, the ellipse degenerates to the straight line segment along the x-axis from one focal point to the other:
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In the limit as  → 0, /2, , and 3 /2, the hyperbola degenerates to the following straight line segments along the x and y axes:


[image: image40.wmf](

)

(

)

(

)

(

)

,  0,  0,  0,  ,  0,  0,  0

xfyxyxfyxy

³+==³£-==£


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (28)

10) On the equal-angle stereonet (Fig. 2.19) the orientation of planar elements may be defined by strike and dip (s, d) and the orientation of linear elements lying in such a plane may be defined by the rake angle (r). Derive the following equations for the azimuth of plunge and plunge angle (p, p) of the linear element lying in the planar element:



[image: image41.wmf](

)

(

)

(

)

(

)

(

)

1

psrdr

1

prd

tansincoscos

sinsinsin

aaqfq

fqf

-

-

=+

éù

ëû

=

éù

ëû


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (29)

Draw a carefully labeled diagram that shows all the angles and elements in relation to one another. 

[image: image42.emf]Up plunge direction North strike direction planar element as Up Ud hr ai a b e d c linear element


The lengths of the sides of the right triangles in the illustration are related to the rake angle, r, of the linear element as:
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Note that a always is positive whereas b may be negative or positive. Other lengths of the sides of the right triangles are related to the dip angle, d, of the planar element as:
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Substituting for a in (30)

 we have:
(31)

 using the first of 
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The plunge angle of the linear element is related to d and c as 
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 we find:
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The angle, i, from the strike direction of the planar element to the plunge direction of the linear element measured in the horizontal plane is related to e and b as 
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 we have:
(30)

 and the second of 
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Note that b may be positive or negative so you must use ATAN2 to solve for the arctangent.
11) Use Matlab to construct an equal-angle stereonet that includes the reference circle and the region inside the reference circle (e.g. Fig. 2.17b). An example stereonet is shown in Figure 2 below from the script stereo_plot_ex11.m. Download this script and study each line of code to understand how the stereonet is constructed from the equations presented in section 2.3.2 of the textbook. Use % at the beginning of lines to suppress computation and plotting of the sample point and great circle, and then run the modified code to construct and print the equal-angle stereonet for this exercise. 

Plot the following planar and linear elements and determine the related angles using the stereonet. For the first pass through this exercise use a transparent overlay on your printed stereonet and construct the elements and angles by hand. For the second pass through this exercise let Matlab do the plotting of each linear and planar element. Label your plots carefully so each point and great circle are identified.

a) Planar element with strike and dip (155, 72). What is the dip direction?

b) Linear element with plunge direction and plunge (291, 24). What is the strike of a vertical planar element that contains this linear element? Plot the vertical planar element. What is the rake of the linear element in this planar element?

c) Normal to the planar element with strike and dip (155, 72). What are the plunge direction and plunge of the pole (normal) to the planar element?

d) The rake is 142o for a linear element in the planar element with strike and dip (155, 72). What are the plunge direction and plunge of this linear element? Hint: equation (5) in question 10 above gives the azimuth of plunge direction and plunge for a linear element lying in a planar element.
The following Matlab m-script plots the equal-angle stereonet inside the reference circle.
% stereo_plot_ex11.m
% Plot stereonet, point, and great circle (Goodman and Shi, 1985, p. 75)
% used in Chapter 2 Concepts exercise 11
%initialize and scale plot
clear all, clf, hold on % clear variables, current figure, hold plot
axis equal, axis off, box off % equal scaling in x and y, no axes or box
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes
plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:') % plot x- and y-axes
r = 1; % radius of reference circle
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree increment
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle
plot(X,Y,'k') % plot reference circle
for j = 1:8 % loop to plot great circles at 10 degree increments
phid = j*(10*pi/180); % dip angle, phid
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great circle
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles
end
for j = 1:8 % loop to plot small circles at 10 degree increments
gam = j*(10*pi/180); % cone angle, gam
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles
end
[image: image50.jpg]



The following lines of Matlab m-script plot the structural elements:

a) the great circle representing the planar element with strike and dip (155, 72)

b) the linear element with plunge direction and plunge (291, 24)

c) the normal to the planar element with strike and dip (155, 72)

d) the linear element with rake (142) in the planar element with strike and dip (155, 72)

als = 155*pi/180; ald = als+pi/2; % dip direction given strike
phid = 72*pi/180; % dip angle
h = -r*tan(phid)*sin(ald); % x-coord of center 
k = -r*tan(phid)*cos(ald); % y-coord of center
rp = r/cos(phid); % radius
X = h + rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'b') % plot planar element as great circle
alp = 291*pi/180; phip = 24*pi/180; % plunge direction and plunge
x = r*tan(pi/4 - phip/2)*sin(alp);
y = r*tan(pi/4 - phip/2)*cos(alp);
plot(x,y,'ro') %plot linear element as a point
aln = ald + pi;  % plunge direction of normal to planar element
phin = (pi/2) - phid; % plunge angle of normal
x = r*tan(pi/4 - phin/2)*sin(aln);
y = r*tan(pi/4 - phin/2)*cos(aln);
plot(x,y,'bo') %plot pole to planar element as a point
thr = 142*pi/180; % rake of lineation in planar element
alp = als + atan2(sin(thr)*cos(phid),cos(thr)); % plunge direction
phip = asin(sin(thr)*sin(phid)); % plunge angle
x = r*tan(pi/4 - phip/2)*sin(alp);
y = r*tan(pi/4 - phip/2)*cos(alp);
plot(x,y,'bo') %plot linear element as point on great circle
[image: image51.emf]
The dip direction for the planar element with strike and dip (155, 72) is:
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The strike of a vertical planar element that contains the linear element with plunge direction and plunge (291, 24) is:
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Note: The strike direction of the vertical planar element could also be taken as 
[image: image54.wmf]ooo
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, but here it makes sense to use the strike direction that is the same as the plunge direction of the linear element. The rake of the linear element with plunge direction and plunge (291, 24) in the vertical planar element is:
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The plunge direction and plunge of the pole to the planar element with strike and dip (155, 72) are:
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Given the rake (142) of a linear element in a planar element with strike and dip (155, 72), the plunge direction and plunge of the linear element are found from (33)

:(34)

 and 
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12) You are given a Cartesian coordinate system with axes (x, y, z) that correspond to the Geographic coordinates (E, N, Up). What are the direction cosines and direction angles for the normal to a planar element with strike and dip (026, 15)? Check your script by running the inverse transformation and recovering the plunge direction and plunge for the normal.
The plunge direction and plunge (n, n) of the normal to a planar element with given strike and dip (s, d) are found using:
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The following Matlab m-script computes the direction cosines and direction angles using (2.101), and recovers the geographic coordinates using the inverse transform (2.102).

% Compute direction cosines and angles 
% given a direction (alp) and inclination (phi)
% Check by computing geographic angles
clear all % clear variables
d2r = pi/180; r2d = 1/d2r; % conversion values
alp = 296
phi = 75
alpr = alp*d2r; phir = phi*d2r; % input geographic angles
calx = sin(alpr)*cos(phir); % transform to direction cosines
caly = cos(alpr)*cos(phir);
calz = cos(phir+pi/2);
alx = acos(calx)*r2d % calculate direction angles
aly = acos(caly)*r2d
alz = acos(calz)*r2d
alt = atan2(calx, caly)*r2d; % recover geographic angles
alt = alt + (alt<0)*360 % force range of 0 to 360
phit = asin(-calz)*r2d
alp =
   296

phi =
    75

alx =

  103.4517

aly =
   83.4853

alz =
  165.0000

alt =
   296

phit =
   75.0000
13) The GPS data for normal faults from the Chimney Rock area were gathered using a data dictionary that prompted the geologist to record the following information for each data station along the faults:
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Here strike and dip refer to the fault surface and rake refers to slickenlines on the fault surface. Two tab-delimited text files contain these data for the Blueberry fault and the Glass fault (numbers in parentheses are the number of data stations):


Blueberry_fault.txt 

(92)


Glass_fault.txt 

(60)

Write a MatLab script that reads each text data file into a data array and parses the orientation data to extract local strike and dip (s, d,) of the faults. Plot the great circles representing these local orientations. Describe the orientations of the two faults.

The following MatLab m-script reads the text files, computes the dip direction and dip and plots the great circles for each fault outcrop.

% stereo_plane.m
% Plot stereonet and great circles for selected Chimney Rock data
% initialize and scale plot
clear all, clf, hold on % clear variables, current figure, hold plot
axis equal, axis off, box off % equal scaling in x and y, no axes or box
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes
plot([-1 1],[0 0],'k:',[0 0],[-1 1],'k:') % plot x- and y-axes
r = 1; % radius of reference circle
TH = linspace(0,2*pi,3601); % polar angle, range 2 pi, 1/10 degree increment
[X,Y] = pol2cart(TH,r); % Cartesian coordinates of reference circle
plot(X,Y,'k') % plot reference circle
for j = 1:8 % loop to plot great circles at 10 degree increments
phid = j*(10*pi/180); % dip angle, phid
h = -r*tan(phid); rp = r/cos(phid); % x-coord of center, h, and radius, rp
X = -h + rp*cos(TH); Y = rp*sin(TH); % coordinates of points on great circle
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',-X,Y,'k:') % plot two sets of great circles
end
for j = 1:8 % loop to plot small circles at 10 degree increments
gam = j*(10*pi/180); % cone angle, gam
k = r/cos(gam); rp = r*tan(gam); % y-coord of center, k, and radius, rp
X = rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points on small circle
Y(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'k:',X,-Y,'k:') % plot two sets of small circles
end
[x,y,z,st,di,ra,qu,si,fo]=textread('Blueberry_fault.txt','%n%n%n%n%n%n%s%s%s');
for j = 1:length(st)
ald = (st(j)+90)*pi/180; phid = di(j)*pi/180; % dip direction and dip
h = -r*tan(phid)*sin(ald); % x-coord of center 
k = -r*tan(phid)*cos(ald); % y-coord of center
rp = r/cos(phid); % radius
X = h + rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'b') % plot planar element
end
[x,y,z,st,di,ra,qu,si,fo]=textread('Glass_fault.txt','%n%n%n%n%n%n%s%s%s');
for j = 1:length(st)
ald = (st(j)+90)*pi/180; phid = di(j)*pi/180; % dip direction and dip
h = -r*tan(phid)*sin(ald); % x-coord of center 
k = -r*tan(phid)*cos(ald); % y-coord of center
rp = r/cos(phid); % radius
X = h + rp*cos(TH); Y = k + rp*sin(TH); % coordinates of points
X(find(X.^2+Y.^2>r)) = nan; % eliminate points outside stereonet
plot(X,Y,'r') % plot planar element
end

[image: image60.wmf]
At most outcrops the Blueberry fault (blue great circles) strikes toward SW and dips steeply toward NW. At one outcrop this fault dips SE. At most outcrops the Glass fault (red) strikes toward the E and dips steeply toward S. At a few outcrops this fault dips toward N.
Convert the orientations into azimuth of plunge and plunge angle (p, p) of the normals (poles) to the faults and plot these normals on a new stereonet. 

The following piece of a MatLab m-script converts the data to plunge direction and plunge and plots the normal. The stereonet construction is omitted.

% stereo_normal
% Plot stereonet, and poles to planar elements
% Use selected data sets from the Chimney Rock area
% initialize and scale plot
clear all, clf, hold on % clear variables, current figure, hold plot
axis equal, axis off, box off % equal scaling in x and y, no axes or box
axis ([-1 1 -1 1]) % sets scaling for x- and y-axes
[x,y,z,st,di,ra,qu,si,fo]=textread('Blueberry_fault.txt','%n%n%n%n%n%n%s%s%s');
for j = 1:length(st)
aln = (st(j)+270)*pi/180; % normal direction
phin = (90 - di(j))*pi/180; % plunge of normal
x = r*tan(pi/4 - phin/2)*sin(aln);
y = r*tan(pi/4 - phin/2)*cos(aln);
plot(x,y,'b*') %plot pole to planar element
end
The stereonet with normals is plotted below, including the mean orientations.

[image: image61.jpg]



Transform the azimuth of plunge and plunge angles (p, p) to direction cosines and use these to compute the mean orientation for each fault. Write down the magnitude and components for the resultant vectors. Compare the vector magnitudes to the number of data stations for each fault. Plot the mean orientations on the stereographic projection along with all the normals.

The following piece of a MatLab m-script transforms the data, computes the mean orientation and plots it, computes the vector mean and the spherical variance.

UX = 0; UY = 0; UZ = 0; % initialize components of resultant vector
[x,y,z,st,di,ra,qu,si,fo]=textread('Blueberry_fault.txt','%n%n%n%n%n%n%s%s%s');
for j = 6:length(st)
aln = (st(j)+270)*pi/180; phin = (90 - di(j))*pi/180;
x = r*tan(pi/4 - phin/2)*sin(aln); y = r*tan(pi/4 - phin/2)*cos(aln);
plot(x,y,'bo') % plot normals to fault surfaces
UX = UX + sin(aln)*cos(phin); UY = UY + cos(aln)*cos(phin); 
UZ = UZ + cos(phin+pi/2); % components of resultant vector
end
U = sqrt(UX^2 + UY^2 + UZ^2) % magnitude of resultant vector
alU = atan2(UX/U,UY/U); alU = alU + (alU<0)*2*pi;
phiU = asin(-UZ/U); % azimuth and inclination of resultant vector
x = r*tan(pi/4 - phiU/2)*sin(alU); y = r*tan(pi/4 - phiU/2)*cos(alU);
plot(x,y,'k*')
alUd = alU*180/pi, phiUd = phiU*180/pi
n = length(st)-5, sv = (n - U)/n
For the Blueberry fault we compute:

U = 83.7438

alUd = 149.1417

phiUd = 20.6010

n = 87

The magnitude of U is 96% of n, indicating a clustered data set.
For the Glass fault we compute:

U = 48.1166

alUd = 10.1604

phiUd = 24.4350

n = 60

The magnitude of U is 80% of n, indicating a more scattered data set.

This plot is consistent with the Blueberry data being more clustered than the Glass data. Note outliers for both the Blueberry and the Glass fault. Some outliers appear to be faults with similar strike but opposite dip direction. Check data to confirm right hand rule. Other outliers could be one of the other 4 fault sets in this region. Again, check notes with data sets and try to resolve. When in the field again re-visit these sites and confirm measurement and interpretation of set.
Compute the spherical variance of the normals for the Blueberry fault and for the Glass fault. Evaluate your results indicating how tightly the data are clustered and how reliable the definition of each fault is, given the number of data stations, the spherical variance, and the number of outliers. Selectively remove outliers and recomputed the spherical variances. Comment on your results and on the appropriateness of ignoring selected field data.

For the Blueberry fault we compute:

sv = 0.0374

For the Glass fault we compute:

sv = 0.1981

The Blueberry fault data set is more clustered and the mean orientation is more robust given the fewer number of outliers and the greater number of data stations. One outlier has a similar strike but opposite dip. This could have resulted from an error in using the right-hand rule. The other appears to be a member of another of the four fault sets. Removing both the spherical variance for the Blueberry fault is sv = 0.0122. These outcrops should be re-visited and if the speculations are confirmed their removal is justified.
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