Fundamentals of Structural Geology
Exercise solutions: concepts from chapter 4


Exercise solutions: concepts from chapter 4 

1) Show how to expand pascals (Pa) in terms of the fundamental units: kilograms (kg), meters (m), and seconds (s). Use a step-by-step procedure starting with the conversion of pascals to newtons per square meter.
The conversion of pascals to newtons per square meter is accomplished as:
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In the second step newtons are converted to the fundamental units and the exponents are resolved:
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2) The stress exerted by the 1 km high column of granite on one square meter is only about four times greater than the stress exerted by a person standing on your fingernail. Explain why these two stresses are nearly the same. In the process find your own weight in newtons and use this for the calculation.

Take the average unit weight of granite as 2.667 x 104 N∙m-3 (the average of 155 different samples of granite) so one cubic meter of granite at sea level weighs 26,670 N. The sea level weight of one of the authors of this textbook is 140 pounds force, which is equivalent to 623 N. 

The stress on the base of the 1 km high column of granite cubes is:
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If the person’s fingernail is 1 cm2 in area then the stress from the author standing on that fingernail is:
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Although the cube of granite weighs much more than the author, and there are 1000 such cubes in the column, the surface area of the fingernail is much smaller than the surface area of one side of the cube of granite. The ratio of weights and the ratio of areas are:
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The two ratios are of the same order of magnitude and therefore approximately compensate for each other when comparing the stresses on the base of the column of granite and on the fingernail.
3) It is easy to become confused by poor or incorrect choices of units of measure. The following statements were found in the geological literature, suggesting that not all geologists use consistent units. For each statement point out the unitary inconsistency and rewrite the statement using SI units.

"The force of gravity at sea level is approximately 980 dynes per square centimeter."
  

The dyne is a unit of force, so dynes per square centimeter would be the units for a force divided by an area, and those are the correct units for pressure or stress, not the units for a force. 

The ‘force of gravity at sea level’ could be interpreted to mean the force exerted by a given mass subject to a given acceleration. At sea level the acceleration of gravity is about 9.8 m∙s-2. In S.I. units a 1 kg mass subject to 9.8 m∙s-2 acceleration would correspond to a force of 9.8 kg∙m∙s-2 = 9.8 N.
"In practice, force is often expressed in terms of grams or grams per square centimeter or in pounds or pounds per square inch."

First of all it can not be the case that ‘grams or grams per square centimeter’ are units of the same physical quantity. Neither can ‘pounds and pounds per square inch’ be units of the same physical quantity.

Grams are units of mass, not units of force. In the S.I. system the force is related to the kilogram because 1 N = 1 kg∙m∙s-2, but one should not use the kilogram as a unit of force. In some archaic literature a unit is adopted called the ‘kilogram force’ (kgf). This pre-supposes an acceleration of 9.8 m∙s-2 (the approximate acceleration of gravity at sea level), so 1 kgf = 9.8 N.
Pounds are units of mass, not units of force. In other archaic literature a ‘pound force’ (lbf) is used as a unit of weight (force). In this case one should always write ‘pound force’ to make the distinction clear with pound mass. 

"Many mountain belts have developed cleavages and associated shortening strains of 50% to 70% ... with rates of shortening between 0.9 cm per year and 0.25 cm per year."

Shortening strains are defined as a change in length (m) divided by the original length (m) of a material line so this physical quantity carries no units. Therefore, the units of rate of shortening would be composed of the unit of strain divided by the unit of time. In the S.I. system the rate of shortening would have units of s-1.

4) Suppose you use the tire pressure gauge at the gas station to fill a mountain bicycle tire to about 50 psi (pounds force per square inch). Use the proper conversion factor to find this air pressure in pascals. Determine at what depth in the earth you would expect the vertical stress to be the same magnitude as the pressure in the mountain bicycle tire.

The conversion of psi to pascals is accomplished as follows:
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For granite with a unit weight of 2.7 x 104 N∙m-3 the vertical stress at 1 m depth is:
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Therefore, the gradient in stress is 2.7x104 Pa∙m-1. Using a pressure of 3.5x105 Pa we calculate the depth in granite at which the vertical stress is equal to the pressure in the mountain bicycle tire:
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5) The following equation has been used in a structural geology textbook to describe how tensile stress, , is concentrated near the tip of a joint:


[image: image9.wmf](

)

2

2

2

3

a

S

b

s

@


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (9)

In this equation S is the remote tensile stress pulling the joint open, a is the length, and b is the breadth of the joint. Analyze the dimensions on both sides of this equation for dimensional homogeneity and point out the inconsistency. 

The dimensions of terms on both sides of (9)

 are:
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Therefore the dimensional analysis proceeds as follows:
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Clearly (9)

 is not a dimensionally homogeneous equation. There must be an error in this equation.
6) The relative displacement (slip) across some faults varies from a maximum, D, near the center to zero at the ends. The gradient in relative displacement, GD, measures the (spatial) rate of change of relative displacement with distance along the fault. In a recent analysis reported in the literature of structural geology this gradient was described as:
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One might conclude that k is a numerical constant because it is reported that k = 0.003 for some sandstones (note the lack of units). Analyze the dimensions of this equation and suggest what dimensions and units should be used for k.

Let u be the relative displacement (slip) and x be the distance along the fault. The dimensions of the two non-constant quantities in (12)

 are:
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Therefore the dimensions of the constant term must be:
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If D is measured in meters, k must be measured in inverse square root meters.
7) Hydraulic fractures are created in an oil reservoir by increasing the fluid pressure in a well bore until the rock breaks and a fracture is driven out into the surrounding formation. Fluid carrying sand grains is pumped into this fracture to prop it open, thereby creating a highly permeable pathway for the oil or gas to reach the well. A model for hydraulic fractures estimates the horizontal component of stress, h near the tip of a vertical fracture to be:
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Here P is the fluid pressure, Sh is the horizontal stress far from the fracture, a is the fracture length, and (r,) are polar coordinates with origin at the fracture tip and Ox is parallel to the fracture plane. Analyze the dimensions of both sides of this equation and show that it is (or is not) dimensionally homogeneous.

The dimensions of the physical quantities in (15)

 are:
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Therefore (15)

 evaluates as:
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This equation is dimensionally homogeneous.
8) The following equation is an important differential equation from continuum mechanics that is used in models of geologic structures such as faults that slip during earthquake events. It establishes the two-dimensional dynamic equilibrium of forces acting in a rock mass in the x coordinate direction in terms of the stress components, xx and yx, the body force component per unit volume, fx, mass density, , the displacement component, ux, and time, t: 
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In this equation x and y are the two Cartesian coordinates. You may have never seen this equation, but you should know how to describe the dimensions of each physical quantity. Use dimensional analysis to prove that this is a dimensionally homogeneous equation.

The dimensions of the physical quantities in (18)

 are:
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Therefore (18)

 evaluates as:
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This equation is dimensionally homogeneous.
9) Upward flow of magma in a vertical dike may be described by the Navier-Stokes equation written for viscous flow of a constant property fluid:
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Here the x-coordinate is perpendicular to the dike plane and the flow direction which is z. This description of the flow field is limited to constant density, , constant viscosity, , and constant acceleration of gravity, g. The left-hand side is equivalent to the mass times the acceleration of the magma, and the terms on the right-hand side are equivalent the forces per unit volume acting on any element of magma. The pressure, p(z, t), can vary with position in the direction of flow and it can vary with time. The only velocity component, vz(x, t), can vary with position across the direction of flow and it can vary with time.

a) Identify the independent variables, the dependent variables, and the material properties (constants) in this description of flow.
independent variables: x, z, t
dependent variables: vz, p
material constants: , , g
b) Define a set of normalized independent and dependent variables and dimensionless differential operators for this version of the Navier-Stokes equation and substitute them into this equation.
The normalized independent variables are:
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Here w is a characteristic length which would be the of the dike and vo is a characteristic velocity, usually specified as the velocity at the center of the dike or the average velocity within the dike.

The normalized dependent variables are:
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The dimensionless differential operators are:
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Substituting (21)

 we have:
(24)

 into (23)

, and (22)

, 
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Taking the constant terms out of the differentiation we find:
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c) Identify the three groups of constants in the normalized equation for viscous flow in a dike and relate these groups to the forces per unit volume acting on the magma. Analyze the dimensions of each group of constants.
The inertial force per unit volume is:
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The viscous force per unit volume is:
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The gravitational force per unit volume is:
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d) Rearrange the groups of constants in the normalized equation for viscous flow in a dike so all the terms are dimensionless and, in doing so, define the Reynolds number and the Froude number. Indicate the appropriate ratio of forces that corresponds to each dimensionless grouping.
Dividing through all terms in the equation by the group representing the inertial force per unit volume we have:
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Simplifying the dimensionless groups in square brackets:
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The inverse of these dimensionless groups are the Reynolds and Froude numbers:


[image: image32.wmf]2

oo

Re,  Fr

vwv

wg

r

h

==


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (32)

This derivation demonstrates that the Reynolds number is a ratio of inertial to viscous forces, and the Froude number is a ratio of inertial to gravitational forces. Written out explicitly using (30)

 we have:
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e) Consider a dike that is 1 m wide and filled with magma of viscosity 105 Ns/m2 and density 2.75 x 103 kg/m3. These values are typical of basaltic dikes and magmas observed on Hawaiian volcanoes. Determine the range of velocities where the viscous forces dominate the inertial forces, and the range of velocities where the gravitational forces dominate the inertial forces. Note: the transition will not necessarily be sharply defined.
For the values given we take just one significant figure and find:
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The Reynolds and Froude numbers are:
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For Re << 1 we would expect the inertial forces to be less than the viscous forces. This implies:
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For Fr << 1 we would expect the inertial forces to be less than the gravitational forces. This implies:
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f) For the same dike and magma consider an average flow rate of 0.1 m/s. This is of the same order as the propagation rate of dikes as inferred from the earthquake activity within Hawaiian volcanoes. During a dike intrusion event a cloud of earthquakes moves progressively down the rift zones of these volcanoes more or less at this rate. What is the relative importance of viscous and gravitational forces for these conditions?
The values given are:
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The ratio of viscous to gravitational forces is:
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The two forces are approximately the same. Given the range of values for these ratios over which a transition in behavior can occur we conclude that both viscous and gravitational forces contribute to the flow of magma in the dike. Considered separately the Reynolds and Froude numbers are:
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These small values suggest that the inertial forces play a much less significant role than the gravitational and viscous forces.
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