Fundamentals of Structural Geology
Exercise solutions: concepts from chapter 5

Exercise solutions: concepts from chapter 5 

1) Study the oöids depicted in Figure 1a and 1b. 

a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal axes of several oöids from each thin section. 

The m-script ooid_stretch_a gives the length (in arbitrary units) for the longest axis, A, and the shortest axis, C, of each of five oöids from Figure 1a. Here it is assumed that the thin section was cut in the plane containing A and C. The m-script ooid_stretch_b gives comparable data for each of five oöids from Figure 1b.

% ooid_stretch_a.m
% calculate stretch for ooids
% Cloos (1971, Plate 11), Fig. 1a
A = [15.25; 14.0; 15.0; 16.0; 17.0];
C = [13.25; 12.25; 14.5; 14.0; 15.0];
R = sqrt(A.*C);
S1 = A./R; S3 = C./R;
meanS1 = mean(S1), stdS1 = std(S1)
meanS3 = mean(S3), stdS3 = std(S3)
% ooid_stretch_b.m
% calculate stretch for ooids
% Cloos (1971, Plate 11) Fig. 1b
A = [20.0 21.0 16.25 23.0 16.5];
C = [13.75 15.0 13.0 16.5 12.0];
R = sqrt(A.*C);
S1 = A./R; S3 = C./R;
meanS1 = mean(S1), stdS1 = std(S1)
meanS3 = mean(S3), stdS3 = std(S3)

The orientations of the oöids are recorded as the (counterclockwise positive) angle from the bottom edge of the picture to the direction of the long axis. For the five oöids from Figure 1a we have (in degrees):

5
7
0
20
5

For the five oöids from Figure 1b we have (in degrees):

-7
-6
-6
-7
-7

We note in passing that the orientations for the more deformed sample are more uniform.

b) Estimate the un-deformed radius of each oöid assuming no volume change during the deformation. Calculate and record the stretch in the two principal directions for each oöid.
To calculate the stretch we make the assumptions that the oöids record a plane deformation (no stretch in the direction perpendicular to the thin section) and that the volume, Ve, of a given deformed (ellipsoidal) oöid is the same as the volume, Vs, of that oöid in the undeformed (spheroidal) state. Then, the ratio of these volumes is:
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For plane deformation the stretch, S2, out of the plane of the thin section is:
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Combining (2)

:
(1)

 and 


[image: image3.wmf](

)

(

)

1/31/2

,  so 

RARCRAC

==


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3)

The greatest and least principal stretches, S1 and S3, are found using:
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c) Compare the values of the principal stretches for the different oöids. How uniform is the deformation within these thin sections? Point out examples of non-uniform deformation within particular oöids?
These comparisons may be done quantitatively using the mean and standard deviation for each data set. For the set from Figure 1a we have:

meanS1 =

    1.0585

stdS1 =

    0.0233

meanS3 =

    0.9451

stdS3 =

    0.0214
The modest standard deviations relative to the mean values suggest a rather homogeneous deformation.  For the set from Figure 1b we have:

meanS1 =

    1.1721

stdS1 =

    0.0327

meanS3 =

    0.8537

stdS3 =

    0.0244

Again the standard deviations are modest relative to the means suggesting a rather homogeneous deformation. Of course one would like to have more measurements, and Cloos certainly did. The orientations of the more deformed oöids is remarkably uniform, varying for only 1 degree among the five sampled, whereas those less deformed oöids vary by 20 degrees in orientation. One might infer from these limited data sets that the deformation tends to align the long axes of the oöids.
In Figure 1a the borders of some oöids cross cut the borders of others leaving the latter oöids without a complete ellipsoidal border. Other oöids have borders that are distorted inward adjacent to neighboring oöids as if deformed by the presence of a stiffer neighbor. In Figure 1b some oöids are distinctly non-elliptical with apparently flattened borders on one side or truncated borders. Some have borders that are distorted inward adjacent to neighboring oöids as if deformed by the presence of a stiffer neighbor. All of these observations suggest a non-homogeneous deformation, but some may be attributed to original non-spherical shapes.

d) Cloos suggested that some oöids have "growth aprons" developed after the deformation. How would you compensate for these aprons when estimating the stretch?
If recognizable in thin section the growth aprons could be avoided in taking measurements of axial lengths from the internal boundary between the oöid and the apron. If growth aprons are inferred, but their boundaries with the oöids can not be identified, those oöids should be ignored.
2) One way to build intuition about deformation is to witness the deformation of familiar objects. Here the objects are brachiopods, which come in many different shapes. Most brachiopods contain two recognizable lines: the hinge line and the line of symmetry or central plication. These lines are perpendicular to each other in the undeformed state. To model the deformation of brachiopods we idealize their shapes. This exercise provides a visualization of deformation that emphasizes the change in orientation of orthogonal material lines: in this case the hinge line and central plication of the brachiopod. In other words this exercise will help you build your intuition about shearing deformation. 

We consider a variety of deformations, some of which you might not expect to be associated with shearing, but all of which are two-dimensional, homogeneous, and can be described by the following linear transformations:
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Here (x, y) are the final coordinates of a particle; (X, Y) are the initial coordinates of that particle; and the coefficients (Fxx, Fxy, Fyx, Fyy) are constants that determine the style of deformation.
a) Construct a set of brachiopods (see Figure below), each with a straight hinge line, a perpendicular line of symmetry, and a rounded valve perimeter. Avoid overlapping of the brachiopods. Place a circle in the center of the field of brachiopods to track the orientations and magnitudes of the principal stretches as associated with a strain ellipse.
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b) Uniaxial extension is defined as:
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The bedding surface is stretched along the x-axis only. Does this deformation result in shearing? If your answer is yes, describe which orientations of originally orthogonal material lines are sheared and which are not. What are the orientations and magnitudes of the principal stretches?

As an example we take Fxx =  3/2. In the plot shown below note that perpendicular lines oriented along the X- and Y-axis in the initial state remain perpendicular and do not rotate into new orientations in the final state. These lines are not sheared. The axes of the strain ellipse are parallel to the x- and y-axis in the final state and therefore are parallel to the material lines that have not sheared. 
However, perpendicular lines in other orientations, oblique to the X- and Y-axis in the initial state, are deformed such that they are not orthogonal in the final state. These pairs of lines are sheared. Apparently an extension parallel to the X-axis results in shearing in all other orientations, except parallel to the Y-axis. The principal stretches, S1 and S2, are oriented parallel to the x- and y-axis respectively and have magnitudes: S1 = 3/2 and S2 = 1.
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c) A general biaxial extension is defined:
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Consider two special cases, so called pure shear:
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and pure dilation:
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Compare and contrast the two special cases in terms of the question: does this deformation result in shearing? If your answer is yes, describe which orientations of originally orthogonal material lines are sheared and which are not. Also compare and contrast the orientations and magnitudes of the principal stretches.

As an example of pure shear we take Fxx =  3/2 and Fyy =  2/3 and make the plot shown below.  As an example of pure dilation we take Fxx =  3/2 and Fyy =  3/2 and make the plot shown below. For pure shear material lines that are parallel to the principal stretch orientations do not shear: they remain orthogonal. However orthogonal material lines that are not parallel to the principal stretch orientations do shear. For pure dilation all initially orthogonal lines remain orthogonal in the final state: there is no shearing deformation. For the case of pure shear the principal stretches, S1 and S2, are oriented parallel to the x- and y-axis respectively and have magnitudes: S1 = 3/2 and S2 = 2/3. For the case of pure dilation the principal stretch orientations are not defined because S = 3/2 in all directions and the initial circle remains a circle, but with a greater radius.
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d) Simple shearing is defined:
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Here  is the angle of shearing: the change in orientation of the material line originally coincident with the Y-axis. Does this material line elongate or shorten? What is the change in orientation of the material line originally coincident with the X-axis? Does this material line elongate or shorten? Do any material lines shorten during simple shearing? If so, how are they oriented in the initial state with respect to the shear planes? What are the orientations and magnitudes of the principal stretches? What is simple about simple shearing?

As an example of simple shear we take Fxy =  1, so  =   45o, and make the plot shown below.
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Material lines originally parallel to the Y-axis rotate clockwise and elongate. This is shown, for example, by the hinge lines of the brachiopods lying along the Y-axis. Material lines originally coincident with the X-axis do not rotate and do not elongate: they lie in the planes of shearing and remain undeformed. This is shown, for example, by the hinge lines of the brachiopods lying along the X-axis. Material lines that are directed into the second and fourth quadrants are shortened during the next increment of simple shearing. For example, the brachiopods located to the upper left and to the lower right of the strain ellipse have hinge lines that were initially oriented at 135o and 315o: these hinge lines shorten throughout the simply shearing shown here as they rotate clockwise. In contrast, material lines that are directed into the first and third quadrants are elongated during the next increment of simple shearing. For example, the brachiopods located to the upper right and to the lower left of the strain ellipse have hinge lines that were initially oriented at 45o and 225o: these hinge lines elongate throughout the simply shearing shown here as they rotate clockwise. The greatest principal stretch is oriented at 32.5o (measured counterclockwise from the x-axis, and has a magnitude S1 = 1.6. The least principal stretch is oriented at 122.5o and has a magnitude S2 = 0.61.
3) One of the first and most important tasks to perform when embarking on a study of deformation is to determine whether one may take advantage of the powerful tools of continuum mechanics available in the realm of small strains, for example as used in elasticity theory. To make this assessment one needs to understand how the general description for an arbitrary deformation is specialized to infinitesimal strain and rotation. This exercise involves one approach to such an assessment.
a) Consider the following description of deformation for the material line of particles along the infinitesimal vector dX in the initial state that is translated, rotated, and stretched to lie along the infinitesimal vector dx in the final state:



[image: image16.wmf]ddd

ddd

xxxy

yxyy

xFXFY

yFXFY

=+

=+


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (11)

Draw a figure that illustrates and labels the position vectors X and x for the particle in the initial and final state; the displacement vector u for the particle; the vectors dX and dx representing the material line in these two states; the components of these vectors (dX, dY) and (dx, dy); the lengths (magnitudes) of the material lines, dS and ds; and the orientations,  and , of the material lines relative to the (X, x) axis.

[image: image17.emf]H dxdy dx x ds h dS X, x Y, y dX dYdXX u


b) Using the following trigonometric relations, which should be consistent with your illustration, derive the equation for the square of the stretch of the material line, that is (ds)2/(dS)2, in terms of the components of the deformation gradient tensor, Fij, and the orientation of the material line in the initial state, . Use double angle formulae for the trigonometric relations.
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From the right triangle used to identify the components of dx in the figure we have:
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Substituting from (11)

 for dx and dy:
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Finally, substituting from the first of (12)

 for dX and dY:
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Eliminating (dS)2 and rearranging we have:
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The following double angle trigonometric identities are now employed:
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Substituting (16)

 the square of the stretch is:
(17)

 into 
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This is equation (5.85).
c) The normal (longitudinal) strain in the arbitrary direction of the material line is defined:
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Use this definition to write an approximation for the square of the stretch that omits second order terms. Under these conditions show that the normal strain and the stretch are related as:
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Rearranging (19)

:
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Omitting the second order term we have:
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This is equivalent to the relationship quoted in (20)

.
d) All of the components of the deformation gradient tensor, Fij, enter the equation for the square of the stretch as squares or products. Therefore omitting terms of this order would eliminate all terms. Rewrite the equation for the square of the stretch in terms of the displacement gradients, omitting squares or products of the displacement gradients to find an approximation for small normal strains. 

The components of the deformation gradient tensor are related to the displacement gradients as:
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The squares and products of these components that appear in (22)

 as follows:
(18)

 are approximated to the same order as 
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Substituting (18)

 the square of the stretch is approximated as:(24)

 into 
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Collecting terms:
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e) Combine your results from questions 3c) and 3d) to write an equation for the normal strain in terms of the displacement gradients for the conditions of small displacement gradients and small normal strains. Identify the components of the infinitesimal strain in terms of the displacement gradients and write the normal strain in terms of the infinitesimal strain components.

From (22)

, substituting for the square of the stretch, the normal strain is approximated as:
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The infinitesimal strain components are written in terms of the displacement gradients as:
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Substituting (27)

 the normal strain in terms of the infinitesimal components is:
(28)

 into 
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f) Suppose Fxx is the only non-zero component of the displacement gradient tensor and consider a material line initially oriented such that  = 0. Identify which displacement gradient plays a role in the small strain approximation for Fxx and determine limits for this gradient that would assure an error of less than 10% in the computation of the square of the stretch.
From (18)

 for the conditions given the square of the stretch is:
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Recall from (24)

 that the displacement gradient enters the exact equation for Fxx with terms of order 0, 1, and 2 and the approximation drops the highest order term:
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Call the displacement gradient g, then for an error less than ten percent:
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Expanding and rearranging, we have a quadratic equation in g:



[image: image39.wmf]2

0.20.10

gg

--=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (33)

The solution of (33)

 is:
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For displacement gradients in this range the error is less than 10% in calculating the square of the stretch. Similar results are obtained for the other components of the displacement gradient tensor. To justify using the so-called small strain approximations, one would want to show that the computational error did not exceed the value specified for the problem.
4) In this exercise we consider the small strains and rotations near a model fault using a solution from elasticity theory. In later chapters we describe the elastic properties of rock and derive the governing equations for linear elasticity. Here we focus only on the kinematics. The model fault (Fig. 6) slips in a right-lateral sense driven by the stress drop  
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 is the shear modulus (typically ~1 – 100 GPa for rock) and 
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 is Poisson’s ratio (typically ~0.1 – 0.3 for rock). 
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Figure 6. (a) Model fault in an elastic body subject to remote shear stress. (b) Displacement field due to slip on model fault.

The displacement components along the surface of the fault, 
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, are (Pollard and Segall, 1987):
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The displacement components along the positive y-axis, that is on 
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, are (Pollard and Segall, 1987):
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a) Evaluate the three small strain components at the middle of the model fault where 
[image: image50.wmf]0 and 0
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. Describe each component with reference to material lines at that point and oriented in the two coordinate directions. Explain the magnitude and sign of each component relating these to slip on the model fault and the elastic stiffness of the surrounding rock.

The partial derivatives of the components from (35)

 with respect to x are:
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Evaluating 
(37)

 at  GOTOBUTTON ZEqnNum258584  \* MERGEFORMAT  the two partial derivatives are:
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The partial derivatives of the components from (36)

 with respect to y are:
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Evaluating 
(39)

 at  GOTOBUTTON ZEqnNum529103  \* MERGEFORMAT  the two partial derivatives are:
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The definitions of the small strain components in two dimensions are:
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From the first of (40)

 we see that the small normal strains in the x and y directions both are zero:
(38)

 and the second of 
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When the model fault slips, material line elements oriented parallel and perpendicular to the fault at the fault middle do not stretch. The small shear strains are found from the first of (38)

:
(40)

 and the second of 
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Fault slip induces a negative shear strain (the angle between orthogonal material lines increases) at the fault middle and the strain is proportional to the stress drop and inversely proportional to twice the elastic shear modulus. The angle increases because the displacement component 
[image: image60.wmf]x

u

 is decreasing with distance from the fault in the y direction.
b) Evaluate the small rotation at the middle of the model fault where 
[image: image61.wmf]0 and 0
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. Describe the rotation with reference to material lines at that point and oriented in the two coordinate directions. Explain the magnitude and sign of the rotation relating this to slip on the model fault and the elastic stiffness of the surrounding rock.

The small rotation angle about the z-axis is defined as:
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Substituting the second of (44)

:
(40)

 into (38)

 and the first of 
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Fault slip induces a positive (counterclockwise) local rotation at the fault middle. The rotation is counterclockwise because the displacement field is moving material away from the fault in quadrant 1 and toward the fault in quadrant 2. The rotation is proportional to the driving stress and inversely proportional to twice the elastic shear modulus. The rotation also is proportional to 
[image: image64.wmf]22
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 where  
[image: image65.wmf]n

 is Poisson’s ratio.

c) Use your result from a) and b) to write down the elements of the matrix equation for the partial derivatives of displacement in terms of a sum of a shear strain matrix and a rotation matrix.  For simplicity let Poisson’s ratio be zero for this exercise.
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When naming the elements of the rotation matrix, a notation consistent with that for the strain components is used:
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From these definitions and using (44)

 we have:
(41)

 and 
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Substituting from (45)

:
(43)

 and 
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This result is visualized in terms of the material line elements at the middle of the fault in Figure 7.
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Figure 7. Effects of strain and rotation on infinitesimal material line elements at the fault middle. (a) the strain. (b) the rotation. (c) the sum of strain and rotation.
d) According to the second of 
(35)

 the displacement component  GOTOBUTTON ZEqnNum977502  \* MERGEFORMAT  acting perpendicular to the fault surfaces is linearly distributed along the fault. This indicates that the fault surfaces remain planar as they rotate. Use the second of  
(35)

 with Poisson’s ratio set to zero to find  GOTOBUTTON ZEqnNum977502  \* MERGEFORMAT  at the fault tip. Compare this to the lower left element from the left side of (46)

 which accounts for the combined strain and rotation at the fault middle. Are they consistent? 


The sum of small shear strain and rotation depicted in Figure 7c for the middle of the model fault suggests that the fault surfaces (coincident with the material line along the x-axis in that figure) rotate counterclockwise when the fault slips in a right lateral sense. According to the second of 
(35)

 the displacement component  GOTOBUTTON ZEqnNum977502  \* MERGEFORMAT  acting perpendicular to the fault surfaces is linearly distributed along the fault. This confirms that the fault surfaces remain planar as they rotate. Using the second of 
(35)

 with Poisson’s ratio set to zero,  GOTOBUTTON ZEqnNum977502  \* MERGEFORMAT  at the fault tip is:
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The ratio 
[image: image77.wmf]2
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 is a measure of the rotation of the entire fault and this is exactly the same as the lower left element of the displacement gradient matrix from the left side of (46)

, which accounts for the combined strain and rotation at the fault middle. We have shown that the local small strain and rotation at the fault middle is consistent with the overall rotation of the fault surfaces.
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