Fundamentals of Structural Geology
Exercise solutions: concepts from chapter 6


Exercise solutions: concepts from chapter 6 

1) The definition of the traction vector (6.7) relies upon the approximation of rock as a continuum, so the ratio of resultant force to surface area approaches a definite value at every point. Use the model of rock as a granular material suggested by Amadei and Stephansson (1997) and (6.15) to compute multiple realizations of the ratio tp/t and recreate a figure similar to Figure 6.7b. Choose a mean and standard deviation for grain/pore widths based on the geometry of the sandstone in Figure 1 and use these to define a normal distribution of widths. A representative spring constant for quartz grains is 6x107 N/m, and for the pores the spring constant is zero.
[image: image1.png]



Figure 1. SEM images of Aztec sandstone, Valley of Fire, NV. (Sternlof, Rudnicki and Pollard, 2005). The base of each image is approximately 1.5mm wide; the gray shapes are grains of quartz; the black shapes are pores.
The matlab m-file to do the simulation is grainspring.m:

% grainspring.m
% reproduce Figure 6.7b for the grain-spring model of rock
% from Amadei and Stephansson (1997)
clear all; clf; hold on;
N = 100; % number of grain-springs
wm = 0.001; % mean width of grains (m)
ws = 0.0003; % standard deviation of grain widths (m)
% n by 1 array with (positive) widths from normal distribution
W = abs(wm + ws*randn(N,1)); 
km = 6e7; % mean of spring constants (N/m)
ks = 2e7; % standard deviation of spring constants (N/m)
% n by 1 array with (positive) spring constants from normal distribution
K = abs(km + ks*randn(N,1));
% set every 5th K to zero to simulate a porosity of 20%
for i = 5:5:95
    K(i) = 0;
end
% compute total traction acting on platen for N constituents
t = sum(K)/sum(W); % equation 6.14 without u and D
% compute partial tractions for sequential combinations of grains
for c = 1:N-1 % consider each number of grains (abscissa)
    for m = 1:(N-c) % consider each begin grain for partial traction
        n = m + c; % define each end grain for partial traction
        tp = sum(K(m:n))/sum(W(m:n)); % equation 6.13 without u and D
        plot(c, tp/t, '.k') % plot ratio of partial to total traction
    end
end
axis([1 100 0 2]);
xlabel('Number of "grains"'); ylabel('tp/t');
The total number of grain springs for the simulation described here is 100. The grain widths are chosen randomly from a population with a mean width of 0.001m (1mm) and a standard deviation of widths that is 30% of the mean. The spring constants for the grains are chosen randomly from a population with a mean spring constant of 6x107 N/m and a standard deviation is 30% of the mean. The rock porosity is approximated by setting the spring constant of every fifth grain to zero. These values are somewhat arbitrary.
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2) Slip on faults may be thought of as driven by the shear component, ts(n), and resisted by the (negative) normal component, tn(n) of the traction vector t(n) acting on the fault surface. Consider the surface of a vertical strike-slip fault oriented with outward unit normal, n, in the direction 350o. Choose Cartesian coordinates, x and y, in the horizontal plane in the directions 100o and 010o respectively. Consider a right triangular free body (a 2D analogue to the Cauchy tetrahedron as shown in Fig. 6.8) with hypotenuse parallel to the fault, side a with outward normal in the positive x-direction, and side b with outward normal in the negative y-direction. We postulate that no shear tractions act on sides a and b, and that the normal components of the tractions on them are tx(a) = -425 MPa and ty(b) = +135 MPa respectively. 

a) Draw a carefully labeled sketch map of the fault surface with normal vector n, the triangular free body, the traction vector components tx(a) and ty(b) acting on this free body, a north arrow, and the Cartesian coordinate system. 
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b) Calculate the Cartesian components of the traction vector t(n) starting with the fundamental equations for balancing forces on the triangular free body in the two coordinate directions. Include these components on your sketch map.
From the sketch map x = 110o and y = 20o, so the x- and y-components of n are:
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To balance forces acting on the triangular free body in each coordinate direction we sum the traction components times the respective areas on which they act:
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Note that the forces balance, not the tractions. The ratio of areas is given by the absolute values of the direction cosines (6.18):
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Solving (3)

 we have:
(2)

 for the x- and y-components of t(n) using 
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c) Calculate the magnitude and direction of the traction vector t(n). Determine the magnitude and direction of the traction vector acting on the adjacent fault surface with outward unit normal -n.

The magnitude of t(n) and the direction of t(n) relative to the x-axis are found by the standard vector formulae:
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The azimuth of this traction vector is 141o. For the adjacent fault surface with outward normal –n we have, using (6.9) and (5)

:
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The azimuth of this traction vector is 320o.

d) Calculate the normal and shear traction components acting on the fault surface with outward normal n. Draw these traction components on another sketch map of the fault surface. Indicate if you would expect slip resulting from the traction to be left- or right-lateral and show this on your sketch map with appropriate arrows. 

The smaller of the two angles between t(n) and n is found from the sketch map given below as:
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The normal component of t(n) is found by taking the scalar product of the traction vector and the unit normal vector. 
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Now consider a unit vector, s, in the direction of the s-coordinate as shown on the sketch map given below. Recall that s is tangential to the fault and directed such that n is to the right. The smaller of the two angles between t(n) and s is found from the sketch map below as: 
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The tangential (shearing) component of t(n) is found by taking the scalar product of the traction vector and the unit tangential vector. 
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Given the negative sign of the tangential component of the traction vector, slip on the fault would be in a right-lateral sense as shown by the double arrows on the sketch map.
[image: image14.emf]n ts(n) tn(n) n sN a x t(n) ax s y


3) We postulate the following stress state in the horizontal plane of the outcrop pictured in Figure 2 at the time of motion on the fault:
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Note that a Cartesian coordinate system is prescribed along with the outward unit normal vector, n, for one surface of the fault. Also note that both normal stress components are negative (compressive) and the shear stress is negative. 
a) Find the components of the outward unit normal vector, nx and ny, in the prescribed coordinate system and use them to compute tx(n) and ty(n), the x- and y-components of the traction vector acting on the fault surface. The direction angles can be measured on Figure 2 with a protractor.
The angle between the positive x-axis and the outward unit normal n is measured as 120o, so the components of n are:
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The Cartesian components of the traction vector acting on the fault surface are found using Cauchy’s Formula (6.40) as follows:
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b) Calculate t(n)and(n), the magnitude and direction of the traction, t(n), acting on the fault surface with outward normal n. Remember to use the proper inverse tangent function in Matlab for the direction.
Using the standard formulae for vector magnitude and direction:
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Note that t(n) is directed into the third quadrant because both tx(n) and ty(n) are negative.
c) Draw a carefully labeled sketch map of the fault surface with normal vector n, the traction vector t(n), a north arrow, and the Cartesian coordinate system. Use your sketch to determine if this traction pushes or pulls against that surface. Remember it represents the mechanical action of the rock in the upper left part of the photo.
[image: image19.emf]n ts tn t(n) n sN fault surface x 120o241ox y


d) Calculate the normal and shear traction components on the fault surface. Recall the right-hand rule for the normal and tangential axes. Is the sign of the shear traction component consistent with the sense of shearing indicated by the offset dike in Figure 2? Explain your reasoning. 

The smaller of the two angles between t(n) and n is found from the sketch map above as:



[image: image20.wmf]o

n

121

x

qaa

=-=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (15)

The normal component of t(n) is found by taking the scalar product of the traction vector and the unit normal vector. 
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Now consider a unit vector, s, in the direction of the s-coordinate. Recall that s is tangential to the fault and directed such that n is to the right. The smaller of the two angles between t(n) and s is found from the sketch map above as: 
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The tangential (shearing) component of t(n) is found by taking the scalar product of the traction vector and the unit tangential vector. 
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Given the positive sign of the tangential component of the traction vector, slip on the fault would be in a left-lateral sense. This is consistent with the offset of the zenolith.
4) Any vector, v, may be resolved into two vector components that are, respectively, parallel and perpendicular to an arbitrary unit normal vector, n (Malvern, 1969):
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This vector equation has important applications in structural geology where the vector in question is the traction, t, acting on a geological surface with outward normal n.

a) Use a carefully labeled sketch of the Cauchy tetrahedron to illustrate the application of (19)

 to the traction vector acting on a planar surface of arbitrary orientation. Show the Cartesian coordinate system, the normal vector, the traction vector, and the normal and shear vector components of the traction with their magnitudes.

[image: image25.emf]x y z n h t |ts| |tn| P ts tn


b) Use the definition of the scalar product to write an equation for the scalar component, tn, of t acting parallel to n in terms of the angle  between these two vectors. Illustrate this relationship on your sketch of the Cauchy tetrahedron. Describe how this scalar component informs one whether the traction pulls or pushes on the prescribed surface. Write this scalar component in terms of the Cartesian components of t and n, and use this result to write an equation for tn, the vector component of t acting parallel to n.
Taking that part in parentheses of the first term on the right side of (19)

 use the definition of scalar product (2.19) to find:
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Because the range of the angle is 0 ≤ ≤(, this scalar product may be positive or negative and, correspondingly, the vector t would pull or push on the surface. For the purpose of computing tn recall that a scalar product can be written as the sum of the products of the respective components:
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Cauchy’s Formula (6.40) may be used to write (21)

 for the magnitude and n for the direction:
(21)

 in terms of the stress components. The vector component of the traction acting parallel to the unit normal is found using the right side of 
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c) Use the definition of the magnitude of a vector product to derive an equation for the magnitude, |ts|, of the scalar component of t acting perpendicular to n in terms of the angle  between these two vectors. Illustrate this relationship on your sketch of the Cauchy tetrahedron. This is the component of the traction taken tangential to the plane of the surface, so it is referred to as the shear component. Explain why the sign of the shear component is ambiguous. Use the second term on the right side of (19)

 to write an equation for ts, the vector component of t acting perpendicular to n in terms of the Cartesian components of t and n. In doing so explain geometrically what is meant by the two cross products. Use your sketch to derive a simple equation for the magnitude of the shear component, |ts|, in terms of t and tn.
Taking that part in parentheses of the second term on the right side of (19)

 we use (3.29) to find the magnitude of the shear component:
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Given the range 0 ≤ ≤(, the quantity |t|sin always is positive, so this calculation does not result in the possibility of a negative sign for the shear component. Having specified only one reference direction, n, we cannot distinguish positive and negative signs for components of vectors in the plane perpendicular to n. Considering the second term on the right side of (19)

, the vector in parentheses t x n is directed perpendicular to the plane defined by t and n, and lies in the surface on which t acts, because this surface is perpendicular to n. To evaluate this vector in terms of the Cartesian components of t and n, use (3.27) to write:
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The magnitude of this vector was shown in (23)

 to be the magnitude of the shear component. However this vector is perpendicular to the direction of the shear component. By taking the cross product of n and t x n we define a vector that has both the magnitude and direction of the shear component. This is done in terms of the Cartesian components of t and n using (3.27) again to find:
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Given the stress components one may use Cauchy’s Formula (6.40) to determine the Cartesian components of t and then use (25)

 to define the components of ts. The magnitude of ts is found from the sketch of Cauchy’s tetrahedron as:
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5) Write a Matlab script that takes as input the six independent components of the stress tensor associated with a given Cartesian coordinate system and a homogeneous stress field. Provide as output the following quantities:

a) the components (tx, ty, tz) of the traction vector, t, acting on surfaces with outward unit normal vector n defined by its components (nx, ny, nz);

b) the magnitude of t and the direction of t in terms of direction cosines;

c) the magnitude of the shear component, |ts|, and the normal component, tn, of the traction vector;

d) the direction of the shear component in terms of direction cosines;

e) the principal values of the stress tensor and the direction cosines for the principal directions; and 

f) the traction ellipsoid corresponding to this state of stress.

THE SOLUTION FOR PROBLEM 5) IS UNDER CONSTRUCTION.
6) Consider the elastic stress field within a circular disk loaded by opposed point forces (Figure 3). The two-dimensional solution is given in equations (6.97 – 6.99).

a) Write a Matlab script to generate contour plots of the principal stress magnitudes and the maximum shear stress magnitude in the circular disk. Compare your plot of the maximum shear stress distribution to the photoelastic image in Figure 3. Frocht concluded from his experimental and theoretical results that, “Inspection of these curves shows the corroboration to be well-nigh perfect.”

b) Using equations (6.97 – 6.99) describe what happens to the stress components near the point of application of the point forces according to the elastic theory. Indicate whether you think this state of stress can be realized in the photoelastic experiment. Suggest what happens near these points in the experiment considering both the nature of the implement used to apply the loads and the nature of the material making up the disc.  

c) Compare your plot of the maximum shear stress to the photoelastic images of model sand grains in Figure 6_frontispiece. Pick a couple of examples that are similar and a couple that are different and explain why.

d) Use the distribution of principal stresses to deduce where tensile cracks might initiate in the disk and in what direction those cracks might propagate. Explain you reasoning. Point out a couple of examples of cracks within the sand grains of Figure 1 that are consistent with your deductions, and examples that are not. Suggest some reasons why cracks in the sand grains might not be consistent with your deduction from the elastic theory.

THE SOLUTION FOR PROBLEM 6) IS UNDER CONSTRUCTION.
7) The polar stress components given in equations (6.108 – 6.110) solve the two-dimensional elastic boundary value problem of a pressurized cylindrical hole in a biaxial remote stress state. This solution was published by G. Kirsh in 1898 and has found many applications in structural geology and rock mechanics. Figure 4 shows the distribution of maximum shear stress induced by a remote uniaxial tension of unit magnitude.

Here we use the Kirsh solution to address some practical problems related to wellbore stability and hydraulic fracturing. Consider a vertical cylindrical hole (the model wellbore) loaded by an internal pressure of magnitude P, and remote horizontal principal stresses of magnitude SH and Sh (Figure 6.33).

a) Write a Matlab script to calculate the polar stress components. Verify your script (at least in part…) by determining that the following boundary conditions are satisfied. A good way to accomplish this is to plot graphs similar to those in Figure 6.34a. Also, write down the remote boundary conditions for  = /2.
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% fig_06_34a
% Circular hole in infinite plate
% Biaxial remote stress; internal pressure
% Plot stress components on radial lines.
% Jaeger and Cook (1979) equations (6.108) - (6.111)
clear all, clf reset; % clear memory and figures
% plot polar stress components on radial line
thd = 0; th = thd*pi/180; % orientation of radial line
ri = 1; % radius of hole 
sH = 2; sh = 0.5; % magnitudes of remote principal stresses
pm = 1; % magnitude of pressure in hole
R = ri:ri/10:ri*10; % radial coordinate on radial line from perimeter
TH = th*ones(size(R)); THD = TH*180/pi; % Angle theta
ST = sin(TH); S2T = sin(2*TH); ST2 = ST.^2; 
CT = cos(TH); C2T = cos(2*TH); CT2 = CT.^2;
R2 = (ri./R).^2; R4 = R2.^2;
% Polar stress components from equations 6.108 - 6.110
SRR = -(0.5*(sH+sh)*(1-R2))-(pm*R2)-(0.5*(sH-sh)*((1-4*R2+3*R4).*C2T));
STT = -(0.5*(sH+sh)*(1+R2))+(pm*R2)+(0.5*(sH-sh)*((1+3*R4).*C2T));
SRT = 0.5*(sH-sh)*((1+2*R2-3*R4).*S2T);
plot(R,SRR,'k-',R,STT,'k-.',R,SRT,'k--');
xlabel('R/ri'); ylabel('stress');
legend('SRR','STT','SRT');
axis ([0 10 -2 2])
The boundary conditions chosen here are a maximum remote compressive stress of magnitude 2 MPa parallale to the x-axis; a minimum remote compressive stress of magnitude 0.5 MPa perpendicular to the x-axis; and an internal pressure of magnitude 1 MPa. On the plot below note that the polar stress components at the edge of the hole are:
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The radial stress and shear stress match the boundary conditions that were applied. The circumferential normal stress is not related to the boundary conditions, but note that it is a relatively large tensile stress. At great distances from the hole relative to the radius:
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Because the remote applied stresses are principal stresses we expect the shear stress to be zero. Here the normal stresses are approaching their prescribed remote values.
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The remote boundary conditions for  = /2 are:
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Comparing (31)

 note how the two polar normal stresses interchange values as the angle  increments from 0 to /2.
(28)

 and 
b) Write a Matlab script to plot a graph, similar to Figure 6.34b.  Begin by plotting the polar stress components for the same boundary conditions used in part a) and describe their variation. Then use this script to determine what internal fluid pressure, P, is required to exactly nullify (reduce to zero) the compressive stress concentration in the circumferential stress component, , on the edge of the hole imposed by a remote lithostatic pressure PL, where  SH = Sh = PL. Plot the polar stress components for PL = 2 MPa and P = 1 MPa. Define the relationship between the fluid pressure and the lithostatic pressure that marks the transition from a compressive to a tensile stress, , at the wellbore.
% fig_06_34
% Circular hole in infinite plate, biaxial remote stress, internal pressure
% Plot stress components on hole perimeter.
% Jaeger and Cook (1979)equations (6.108) - (6.111)
clear all, clf reset; % clear memory and figures
ri = 1; % hole radius
sH = 2; sh = 0.5; % remote principal compressive stress magnitudes
pm = 1; % pressure in the hole
% plot polar stress components on hole perimeter
TH = 0:pi/18:pi/2; THD = TH*180/pi; % Angle theta
R = ones(size(TH)); % radial coordinate at edge of hole
ST = sin(TH); S2T = sin(2*TH); ST2 = ST.^2; 
CT = cos(TH); C2T = cos(2*TH); CT2 = CT.^2;
R2 = (ri./R).^2; R4 = R2.^2;
% Polar stress components
SRR = -(0.5*(sH+sh)*(1-R2))-(pm*R2)-(0.5*(sH-sh)*((1-4*R2+3*R4).*C2T));
STT = -(0.5*(sH+sh)*(1+R2))+(pm*R2)+(0.5*(sH-sh)*((1+3*R4).*C2T));
SRT = 0.5*(sH-sh)*((1+2*R2-3*R4).*S2T);
plot(THD,SRR,'k-',THD,STT,'k-.',THD,SRT,'k--');
xlabel('theta (degrees)'); ylabel('stress');
legend('SRR','STT','SRT');
axis ([0 90 -3 3]);

The three polar stress components at the edge of the hole are plotted using the same boundary conditions chosen for part a).
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Note that the radial normal stress and the shear stress are constant in keeping with the prescribed boundary conditions. Also note that the circumferential normal stress varies from a tension of 1.5 MPa to a compression of -4.5 MPa. 
Now change the remote principal stresses so they are of equal magnitude, say 2 MPa. Note in the plot below that the radial normal stress and the shear stress are constant and in keeping with the prescribed boundary conditions, however the circumferential normal stress also is constant and a relative great compression. To change this normal stress to a tension without changing the remote stresses one must add sufficient pressure in the hole. From (6.110) with r = R and SH = Sh = PL we have:
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This is the transition from compressive to tensile circumferential stress. For lesser pressure in the hole the stress is compressive and for greater pressure it is tensile. In other words the internal fluid pressure in the wellbore must exceed the lithostatic pressure be a factor of 2.
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c) Predict where hydraulic fractures would initiate and where those fractures would propagate given the ratio of horizontal principal stresses, SH / Sh = 3 / 2. Use the same remote stress conditions to predict where borehole breakouts would occur. Draw a sketch of each prediction including the wellbore and the horizontal principal stresses.

Using the same Matlab m-file as in part b) and the boundary conditions prescribed here, the stress state on the edge of the wellbore is illustrated in the following figure. Note that the circumferential normal stress varies from a maximum (tensile) value at θ = 0 to a minimum (compressive) value at θ = π/2. 
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Hydraulic fractures would initiate at the hole edge where θ = 0 and θ = π. That is, they form on the edges of the hole that are parallel to the direction of minimum compressive stress in the remote field as illustrated in the following sketch. Hydraulic fractures propagate into the surrounding rock along a vertical plane that is perpendicular to the remote least compressive stress, Sh. 
[image: image43.emf]horizontal section hydraulic fracture wellbore Sh SH Du


Wellbore breakouts, on the other hand, would initiate at θ = π/2 and θ = 3π/2. That is, they form on the edges of the hole that are parallel to the direction of maximum compressive stress in the remote field as illustrated in the following sketch.
[image: image44.emf]Sh r =R r >R wellbore breakout opening fractures shear fractures remote stress r>>R SH horizontal section


d) The average unit weight of rock at a particular drilling site is 2.5 x 104 N/m3 and the unit weight of the fluid in the wellbore is 1.0 x 104 N/m3. Calculate the circumferential stress at the wellbore at a depth of 1 km. Calculate the pressure that must be imposed at the wellhead to reach the transition state where the circumferential stress goes from compressive to tensile. Also calculate the wellhead pressure necessary to induce the hydraulic fracture at this depth.

From (6.110) with r = R and SH = Sh = PL we have:
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Given the unit weights of the rock and water respectively, the two pressures at one kilometer depth are:



[image: image46.wmf](

)

(

)

(

)

(

)

433

433

2.510Nm1.010m25MPa

1.010Nm1.010m10MPa

Lr

w

PgD

PgD

r

r

-

-

==´´=

==´´=


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (34)

Using (33)

 the circumferential stress at the wellbore is:
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Because this is compressive there would be no hydraulic fracture. In order to reach the transition to tensile stress at one kilometer depth, a well head pressure of 40 MPa would have to be added. In order to fracture the rock one would have to add an additional pressure equal to the tensile strength of the rock (about 10 MPa). Thus, the design wellhead pressure for hydraulic fracturing would be 50 MPa.
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