Fundamentals of Structural Geology
Exercise solution: strain during 1906 earthquake
Exercise: infinitesimal strain during the great San Francisco earthquake of 1906  


1) Use the information in arena_data.txt to plot the displacement vectors for the twelve stations on a map of the Pt. Arena region using geographic coordinates (longitude, latitude) converted to decimal numbers. Include a straight-line representation of the fault trace, taken from measurements of two points on the fault. Also include a scale bar for the displacement vectors. 

The Matlab m-script SAF_Arena.m reads the data file arena_data.txt and makes the plot given here as Figure 1.

[image: ]
Figure 1. Plot of Pt. Arena area in geographic coordinates with San Andreas Fault (black line) and displacement vectors for 12 stations.

% SAF_Arena.m
% Analyze geodetic data from Pt. Arena for 1906 quake
% This m-script builds upon one originated by Pete Lovely
clear all; clf reset; % clear memory and figures
% read text file with geodetic data from Matthews & Segall (1993)
[latd,latm,lond,lonm,uy,ux,ae,be,aa,sn]=textread('arena_data.txt',...
    '%n %n %n %n %n %n %n %n %n %s','delimiter','\t');
% convert station coordinates to decimal degrees
Slat = latd + latm/60; Slon = -lond - lonm/60;
% define lat and lon in decimal degress for fault end points from map
Flat = [39.0876;38.8333]; Flon = [-123.7651;-123.5419];
% plot fault, displacement vectors, and scale
sc1 = 0.02; % scale factor for vectors
plot(Flon,Flat,'k'), hold on, axis equal
quiver(Slon,Slat,ux*sc1,uy*sc1,0) 
quiver(-123.75,38.85,1*sc1,0,0)
text(-123.75,38.86,'one meter')
xlabel('Longitude (decimal degrees)')
ylabel('Latitude (decimal degrees)')
title('SAF near Pt. Arena with 1906 displacements')
hold off

2) Convert the geographic coordinates for the twelve stations and the two points on the fault to UTM coordinates. Use the Matlab m-script function deg2utm found at Matlab Central File Exchange. Plot the map again with stations, fault and scale using the UTM grid. Compare the two plots and explain why the map using geographic coordinates is distorted (both should be plotted using the axis equal command).

The Matlab m-script SAF_Arena.m is continued to make the next plot (Figure 2). The map in Figure 1 is distorted because the spacing between latitude lines of a given increment is not the same as the spacing between longitude lines of the same increment at this latitude. Using the UTM grid corrects for this distortion.

[image: ]
Figure 2. Plot of Pt. Arena area in UTM coordinates with San Andreas Fault (black line) and displacement vectors for 12 stations (blue) with components parallel to fault (red).

% convert decimal degrees to utm coordinates for stations and fault
[Xs,Ys,zones]=deg2utm(Slat,Slon);
[Xf,Yf,zonef]=deg2utm(Flat,Flon);
% plot fault, displacement vectors, and scale
sc2 = 2000; % scale factor for vectors
figure, plot(Xf,Yf,'k'), hold on, axis equal
quiver(Xs,Ys,ux*sc2,uy*sc2,0)
quiver(4.3e5,4.3e6,1*sc2,0,0)
text(4.3e5,4.301e6,'one meter')
xlabel('UTM Easting (meters)')
ylabel('UTM Northing (meters)')
title('SAF near Pt. Arena with 1906 displacements')
% compute parameters for straight line representation of fault
% using slope y-intercept form
m = (Yf(2)-Yf(1))/(Xf(2)-Xf(1)); % slope of fault in UTM space
b = -(m*Xf(1)) + Yf(1); % y-intercept of fault in UTM space
% compute unit vector directed parallel to fault
fx = Xf(2)-Xf(1); fy = Yf(2)-Yf(1); % components of fault vector
fxn = fx/sqrt(fx^2+fy^2); 
fyn = fy/sqrt(fx^2+fy^2); % normalized components
% resolve disp vectors into parallelism with fault vector and plot
P = fxn*ux + fyn*uy; % dot product of disp vector and unit fault vector
Px = P*fxn; Py = P*fyn; % x- and y-components of resolved disp vectors
quiver(Xs,Ys,Px*sc2,Py*sc2,0) % plot resolved disp vectors
hold off

3) Starting with the standard ‘two point’ form for a straight line, deduce an equation for the fault trace using UTM coordinates. Convert this to the ‘slope y-intercept’ form and give numerical values for the slope and intercept. Resolve the displacements at each station into a direction parallel to the San Andreas Fault. Plot these resolved displacement vectors on the map from part 2) and give their components relative to the UTM coordinates.

The standard ‘two point’ form for a straight line is:

[bookmark: ZEqnNum858753]		
A straight line is drawn on the map of the Pt. Arena area by connecting the distal ends of the fault trace where it is exposed on land. When extended to the northern border of the map the latitude and longitude coordinates of the fault are:

	
The intersection of the fault trace with the southern border of the map is at:

	
Here the precision in decimal degrees is consistent with the data given as degrees and minutes to two decimal places. That is, 0.01minutes is equal to 0.0002 degrees.  Converting to UTM coordinates the two points on the fault become:

	
Here the precision in meters is consistent with the data since 0.0002 degrees is a few tens of meters. Convert  to the point-slope form by rearrangement:

[bookmark: ZEqnNum426125]		
This identifies the slope in terms of the coordinates of the two points on the fault, and this is evaluated as:

	
The y-intercept is found by substituting x = 0 and y = b in  and rearranging such that:

		
The slope y-intercept form of a straight line is:

[bookmark: ZEqnNum441226]		
For the fault we have:

[bookmark: ZEqnNum571557]		

To resolve the displacements onto a line parallel to the San Andreas Fault, the first step is to define a vector in that direction. The components of this vector are:

	
These components are normalized by the magnitude of this vector to find the components of a unit vector parallel to the fault:

	
The dot product of a displacement vector with this unit vector gives the magnitude of that displacement vector, p, as resolved into parallelism with the fault:

	
The components of a resolved displacement vector are found by multiplying the magnitude by the respective components of the unit vector:

	
The components of p are used to plot the fault-parallel displacement vectors (red) in Figure 2. In most cases there is little difference between the fault-parallel displacement and the actual displacement at the 12 stations. The components are:

Px =   0.5911    0.6500    0.8090    1.0559    0.8654    1.1733   -1.2427   -1.1599   -1.1137
   -0.2768   -0.2338   -1.1203
Py =  -0.8759   -0.9633   -1.1989   -1.5648   -1.2826   -1.7388    1.8417    1.7189    1.6505
    0.4102    0.3464    1.6603

4) Calculate the perpendicular distance from the trace of the fault to each station. Plot a graph of the resolved displacements (ordinate) versus the perpendicular distance (abscissa). This distribution will be used in the subsequent parts of the exercise to estimate the depth of faulting, stress drop, and strain at Earth’s surface.

The general form of a straight line is:

[bookmark: ZEqnNum428511]		
Using this form, the perpendicular distance from the straight line to the point (x1, y1) is:

		
Here the sign of the radical is chosen opposite to the sign of C when C ≠ 0, and the same as the sign of B when C = 0. Comparing  and  we note that:

	
With these substitutions, and the values for the slope and y-intercept from , the perpendicular distances from the fault to the stations are:

d = 1.0e+004 *    1.0692    1.3256    0.3795    0.0237    0.3636    0.0485   -0.1743   -0.6530   -0.7673   -0.5874   -0.6826   -0.6942 meters

The plot of resolved displacement versus perpendicular distance is given in Figure 3.

[image: ]
Figure 3. Plot of displacement acting parallel to the San Andreas Fault versus distance from the fault in the Pt. Arena area.

Continuing the Matlab script to prepare Figure 3 we have:

% compute parameters for straight line representation of fault
% using slope y-intercept form
m = (Yf(2)-Yf(1))/(Xf(2)-Xf(1)); % slope of fault in UTM space
b = -(m*Xf(1)) + Yf(1); % y-intercept of fault in UTM space
% compute unit vector directed parallel to fault
fx = Xf(2)-Xf(1); fy = Yf(2)-Yf(1); % components of fault vector
fxn = fx/sqrt(fx^2+fy^2); fyn = fy/sqrt(fx^2+fy^2); % normalized components
% resolve disp vectors into parallelism with fault vector and plot
P = fxn*ux + fyn*uy; % dot product of disp vector and unit fault vector
Px = P*fxn; Py = P*fyn; % x- and y-components of resolved disp vectors
quiver(Xs,Ys,Px*sc2,Py*sc2,0) % plot resolved disp vectors
hold off
% plot perpendicular distance from fault versus parallel displacement
A = -m; B = 1; C = -b; % coefficients of the general form
Dis = (A*Xs + B*Ys + C)/sqrt(A^2 + B^2); % perpendicular distance
figure, plot(Dis,P,'ro',[0 0],[-2.5 2.5],'b')
xlabel('Perpendicular distance from model fault (meters)')
ylabel('Displacement parallel to model fault (meters)')
title('Displacement distribution for Pt. Arena 1906 data')

Knopoff (1958) used elasticity theory to derive an expression for the displacement field at earth’s surface during a slip event on the model fault:

[bookmark: ZEqnNum899224]		

5) Solve  for the relative displacement, ux, (slip) across the fault and use this to write a non-dimensional equation for the displacement distribution and plot this distribution. Given the observed slip on the San Andreas fault in the Point Arena area of ux = 5 m (Lawson, 1908), use the displacement parallel to the fault at each station and Knopoff’s model to estimate the depth of faulting. Calculate the mean value of the twelve depth estimates, and use this value to plot the model displacement and the displacement vectors calculated from the geodetic data versus the perpendicular distance from the fault. Discuss the correlation or lack thereof.

To streamline the presentation define the stress drop, s, as:

	
Then, slip for all x, at (y = 0 = z) is:

	
A non-dimensional equation for the displacement distribution with distance from the fault in the y-coordinate direction is found using ux to normalize :

[bookmark: ZEqnNum311758]		
This displacement distribution is plotted in Figure 4.

[image: ]
Figure 4. Normalized displacement versus normalized distance for the Knopoff model.
Note that the displacement changes sign across the fault, being positive for positive y and negative for negative y for this right-lateral fault. The normalized displacement is only a function of y/D, taking on the value ½ at the fault and non-linearly decaying toward zero at great distances relative to D. The Matlab code for Figure 4 and 5 follows:

% plot the non-dimensional displacement versus distance from the fault
Yd = -3:0.01:3; % normalized distance
Ud = sign(Yd).*(0.5*(sqrt(Yd.^2 + 1) - abs(Yd))); % normalized disp.
figure, plot(Yd,Ud)
xlabel('Normalized distance, y/D')
ylabel('Normalized displacement, ux/dux')
title('Displacement distribution for Knopoff model fault')
axis([-3 3 -0.75 0.75])
% estimate the depth of faulting and the displacements
du = 5; % observed fault slip
D = (4*abs(P.*Dis))./(du*(1 - 4*(P/du).^2)); % estimated fault depth
mD = mean(D);
E = sign(P).*(0.5*du*(sqrt(1 + Dis.^2/mD^2) - abs(Dis)/mD));
figure, plot(Dis,P,'go',Dis,E,'r*',[0 0],[-2.5 2.5],'b')
xlabel('Perpendicular distance from model fault (meters)')
ylabel('Displacement parallel to fault (meters)')
title('Displacement distributions for Pt. Arena 1906 data')

Rearranging  in order (ultimately) to solve for D we have:

	
Squaring both sides:

	
Cancelling terms and rearranging:

	
Solving for D we find:

		
Values of estimated depths of faulting for the 12 stations are:
D = 1.0e+004 *    1.1004    1.5721    0.6599    0.0832    0.7295    0.2752    1.4743    3.4717    3.3422    0.2420    0.2348    3.1057
The mean value of fault depth is 1.3576e+004m. 
From  we solve for the component of displacement parallel to the fault given the perpendicular distance and the depth of faulting:

		
The calculated values are compared to the resolved values from the geodetic data in Figure 5.

[image: ]
Figure 5. Displacement parallel to fault from Knopoff model (red) and geodetic data (green) versus perpendicular distance from fault.

The model displacements have a similar distribution to the geodetic displacements but overestimate the displacements on the NE side of the fault and underestimate those on the SW side except for the stations CATH. CH and SINCLAIR which are anomalously low. This suggests that the data from those stations should be re-evaluated for possible errors and for geological irregularities such as a local fault that may have slipped during the same time interval. 

6) Based upon your estimates of D and a shear modulus, G = 3 x 104 MPa, taken from laboratory rock mechanics testing, estimate a range of stress drops for this earthquake. Give the calculated stress drops and their mean value. We note that others have estimated the stress drop to be between 4.7 MPa and 19.0 MPa (Chinnery, 1967).

Rearranging  the stress drop is calculated as:

		
Using the mean depth from part 5) and the given shear modulus, the stress drops inferred from each station displacement are calculated as follows:

% calculate the stress drop for each station using the mean depth
G = 3e4; % elastic shear modulus
Ds = sign(Dis).*((G*P)./(sqrt(Dis.^2 + mD^2) - abs(Dis)));
mDs = mean(Ds);
% calculate and plot the angle of shear distribution
Y = -15000:1000:+15000;
Sd = -(mDs/(2*G))*(1 - (abs(Y)./(sqrt(Y.^2 + mD^2))));
figure, plot(Y,Sd)
xlabel('Perpendicular distance from model fault (meters)')
ylabel('Angle of Shear (radians)')
title('Angle of shear distribution for Pt. Arena 1906 data')
 
Ds =    4.8113    6.0967    4.2119    4.2449    4.4554    4.8039    5.5805    7.2888    7.5407
    1.6645    1.4981    7.2342 MPa
The mean value of the stress drop is: 4.95 MPa
We have a range from about 1.5 MPa to 7.5 MPa. Again the two stations CATH. CH and SINCLAIR are anomalously low whereas all other estimates nearly fall within the range determined by others. The mean value is at the lower end of the published values.


7) The angle (  is a measure of the shearing distortion referred to as the angle of shear. Use trigonometry to relate the angle of shear to the differential displacement, ux, and the differential height, y, of the element. Then relate the angle of shear to the partial derivative . Compare your result to the definition of the infinitesimal strain tensor components given in (5.118). Explain why some components are zero for the Knopoff fault model, and identify which component corresponds to the angle of shear in the horizontal plane.

The angle of shear, γ, is related to the change in the x-component of displacement over and incremental distance in y as:

	

Taking only the first term in the small angle approximation, , and taking the limiting form of the displacement gradient, we have:

[bookmark: ZEqnNum855314]		
The imposed conditions on the displacement field for Knopoff’s fault model are:

	
Using these conditions the only non-zero strain components are:

[bookmark: ZEqnNum546024]		
As given in , the angle of shear in the horizontal plane is just twice the xy-component of infinitesimal strain in that plane.

8) Use Knopoff’s equation  for the displacement field near the model strike-slip fault and the kinematic equations to derive an equation for the distribution of shear strain away from the fault. Take care that the proper signs are preserved in taken the derivative. Analyze this distribution of infinitesimal shear strain to determine the shear strain on either side of the fault, y = 0±, and at great distances from the fault, y = ±∞. Explain why your results make sense given the distribution of displacements during the seismic cycle. Draw a sketch of the seismic cycle and use this to address the question.

Taking the derivative of  with respect to y we have:

	
Taking the derivatives of each term on the right hand side:

	

	
The infinitesimal strain in the horizontal plane is:

	
Evaluating the shear strain upon approaching the fault from either side we have:

	
Evaluating the shear strain at great distances from the fault we have:

	
The shear strain is a symmetric function that is negative on both sides of the fault for a positive stress drop. The absolute value of the shear strain monotonically decreases away from the fault and goes toward zero at great distances. Therefore, we can rearrange the equation into the following simpler form:

[bookmark: ZEqnNum599664]		
The following sketch (Figure 6) illustrates the seismic cycle in terms of the fault-parallel displacement distribution away from a cartoon fault.

[image: ]

Figure 6. The seismic cycle illustrated by the deformation and displacement of a straight marker initially oriented perpendicular to a cartoon fault that slips in a right-lateral sense.

Note that on both sides of the cartoon fault the displacement field is such that a small square element would distort into a parallelogram with the same sense of shearing (top to the left with respect to the bottom). This is a negative shear strain.

9) Prepare a graph of the distribution of angle of shear over the range of perpendicular distances -15 ≤ y ≤ +15km. Evaluate the range of angular changes you might expect for the next great earthquake along the San Andreas fault at distances of 0, 5, 10, and 15 km. Suggest a design for a surveying network that would enable you to measure the distortion of the ground surface near the fault.

The angle of shear defined in  is plotted in Figure 7 using  for the shear strain, the mean shear stress drop calculated in part 6), the shear modulus given in part 6), and the mean depth of faulting calculated in part 5).

[image: ]
Figure 7. Angle of shear versus perpendicular distance from the fault.

The angle of shear ranges about -2 x 10-5 radians at 15 km distance to a maximum of about -8 x 10-5 radians adjacent to the fault. This is a range from about -0.001 degrees to about -0.0046 degrees. One of many possible monitoring schemes would use linear arrays of bench marks oriented perpendicular to the fault and placed at different distances from the fault. A surveying instrument, capable of measuring these small angular changes, would be set up at one end of an array and angles would be turned to each successive bench mark.

10) In two dimensions two orthogonal directions are associated with extreme values of the normal strains. These are referred to as the principal strains and the orientations of the line elements associated with these strains are given by:

[bookmark: ZEqnNum613346]		
Calculate the orientations of the principal strains near the model fault. The magnitudes of the principal strains are given by:

[bookmark: ZEqnNum626787]		

[bookmark: ZEqnNum215539]		
Calculate the magnitudes of the principal strains near the model fault. Explain how you would take advantage of this information to design a monitoring program to capture the distribution of interseismic strain.

The principal directions are found by substituting  into  where appropriate, and by noting that the shear strain always is negative:

	
The magnitudes of the principal strain are found by substituting  into  and :

	
The greatest principal strain is an extension equal to the fault-parallel shear strain. The least principal strain is a contraction equal to the negative of the fault-parallel shear strain. Because the principal strains are equal in magnitude and opposite in sign, this is referred to as “pure shear” strain. Linear extensometers or other longitudinal strain measuring devices would be placed at 45o and 135o to the trace of the fault to capture these extreme values of the strain tensor components.
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